
The Regina Rexx Interpreter – Win32 Functions

Patrick TJ McPhee (ptjm@interlog.com)

version 1.5.1, 19 December 2003

Contents

1 Introduction 1
1.1 Reporting Bugs . 1
1.2 Using RxFuncAdd . 2
1.3 Licencing . 2
1.4 Numeric Index Convention . 2

2 Housekeeping Functions 3
2.1 W32Load/DropFuncs . 3
2.2 W32Version . 3

3 Error Messages 3
3.1 w32geterror . 3
3.2 w32olegeterror . 4
3.3 w32debug . 4

4 Registry Functions 4
4.1 List of Registry Functions . 4
4.2 Example . 5
4.3 w32regopenkey . 6
4.4 w32regcreatekey . 6
4.5 w32regconnectregistry . 6
4.6 w32regclosekey . 6
4.7 w32regqueryvalue . 6
4.8 w32regqueryvaluetype . 7
4.9 w32regsetvalue . 7
4.10 w32regdeletekey . 8
4.11 w32regdeletevalue . 8
4.12 w32regenumkey . 8
4.13 w32regenumvalue . 8
4.14 w32regflushkey . 8
4.15 w32reggetkeysecdesc . 8
4.16 w32regsetkeysecdesc . 9
4.17 w32regqueryinfokey . 9
4.18 w32regsavekey . 9
4.19 w32regrestorekey . 9
4.20 w32regloadkey . 9
4.21 w32regunloadkey . 9
4.22 w32expandenvironmentstrings . 10

5 Event Log Functions 10
5.1 List of Event Log Functions . 10
5.2 w32openeventlog . 11
5.3 w32closeeventlog . 11
5.4 w32getnumberofeventlogrecords . 11
5.5 w32getoldesteventlogrecord . 11
5.6 w32openbackupeventlog . 11
5.7 w32backupeventlog . 11
5.8 w32cleareventlog . 11
5.9 w32findeventlogentry . 12
5.10 w32geteventid . 12

i

5.11 w32geteventtype . 12
5.12 w32geteventcategory . 12
5.13 w32geteventnumstrings . 13
5.14 w32geteventtimewritten . 13
5.15 w32geteventtimegenerated . 13
5.16 w32geteventstring . 13
5.17 w32geteventdata . 13
5.18 w32writeeventlog . 13
5.19 Creating message files . 14

5.19.1 Message Definitions . 14
5.19.2 Output Files . 15

6 OLE Automation 16
6.1 List of Automation Functions . 16
6.2 w32createobject . 16
6.3 w32releaseobject . 17
6.4 w32olecleanup . 17
6.5 w32getobject . 17
6.6 w32olegetid . 17
6.7 w32callfunc . 18
6.8 w32callproc . 19
6.9 w32getproperty . 19
6.10 w32getsubobj . 19
6.11 w32putproperty . 19
6.12 w32olegetarray . 20
6.13 w32oleputarray . 20
6.14 w32olenext . 20
6.15 w32olegeterror . 20
6.16 getoleclass Type Library ‘Browser’ . 21

7 Service Control Manager 23
7.1 List of Service Control Functions . 23
7.2 w32svcstart . 23
7.3 w32svcstop . 23
7.4 w32svcremove . 23
7.5 w32svcinstall . 24

8 Shell 24
8.1 List of Shell Functions . 24
8.2 w32menuadditem . 24
8.3 w32menuedititem . 25
8.4 w32menuremoveitem . 25
8.5 w32menumoveitem . 25
8.6 w32menumove . 25

9 Program Execution 25
9.1 List of Program Execution Functions . 26
9.2 w32execute . 26
9.3 w32executestem . 26
9.4 w32funcadd . 26
9.5 w32funcdrop . 28
9.6 w32funcquery . 28

ii

10 Common Dialogs 28
10.1 List of Common Dialog Functions . 28
10.2 w32dlgopenfile . 29
10.3 w32dlgsavefile . 29
10.4 w32dlgchoosecolor . 30
10.5 w32dlgchoosecolour . 30

11 System Parameters 30
11.1 List of System Parameter Functions . 30
11.2 w32sysgetusername . 31
11.3 w32sysgetcomputername . 31
11.4 w32syssetcomputername . 31
11.5 w32sysgethardwareprofilename . 31
11.6 w32sysshutdown . 31
11.7 w32syssetpowerstate . 32
11.8 w32sysgetpowerstatus . 32
11.9 w32sysgetosversion . 32
11.10w32sysgetcolours . 32
11.11w32syssetcolours . 33
11.12w32sysgetparameter . 34
11.13w32syssetparameter . 34
11.14w32sysshortfilename . 36
11.15w32syslongfilename . 37
11.16w32sysfullfilename . 37

12 Clipboard Functions 37
12.1 List of Clipboard Functions . 37
12.2 w32clipopen . 38
12.3 w32clipclose . 38
12.4 w32clipgetstem . 38
12.5 w32clipget . 38
12.6 w32clipsetstem . 39
12.7 w32clipset . 39
12.8 w32clipregisterformat . 40
12.9 w32clipenumformat . 40
12.10w32clipformatname . 41
12.11w32cliptestformat . 41
12.12w32clipempty . 41

13 Example Programs 42
13.1 regregina.rex . 42
13.2 eventlog.rex . 42
13.3 evterr.rex . 42
13.4 findservice.rex . 43
13.5 word.rex . 43
13.6 menu.rex . 43
13.7 vss.rex . 43
13.8 randcolour.rex . 44
13.9 getcolours.rex . 44
13.10pdfword.rex . 44
13.11enumword.rex . 46
13.12clipex.rex . 46

iii

13.13wrevlog.rex . 46

Index 47

iv

1 Introduction

This paper describes a small collection of functions which provide access to the NT registry, event log,
service control manager, clipboard and shell, and to a large set of applications through OLE Automa-
tion. Although this documentation consistently refers to NT, the functions which are not NT-specific (ie,
registry, shell, and OLE) should also work with lesser Win32 implementations.

Many of the functions originally appeared as part of the Regina port performed by Ataman software,
which has been shipped with the NT resource kit. I have changed the syntax of some of the functions.
In most cases, the changes are upwardly compatible (new optional arguments), however there is one
fairly pervasive change which will require changes to existing scripts. Ataman’s port raises a syntax error
under certain odd circumstances, for instance when you query the value of a registry entry, but there is
no registry entry to be found. This version of the functions will generally set the special variable RC to 1
on failure or 0 on success.

The effect of this change is that code like this:

signal on syntax errone
failed = 0
call function arg1,arg2,arg3
contone:

if failed
say ’it failed’

...

errone:
failed=1
signal contone

will no longer work, and has to be replaced by code like this

call function arg1,arg2,arg3

if RC
say ’it failed’

...

I did this because I think it’s an improvement. In general, the current version of Regina maintained
by Mark Hessling has many improvements in terms of stability, functionality, and ANSI compliance over
the version on the resource kit, and the resource kit version should never be used.

I initially dropped w32expandenvironmentstrings because I believed it to duplicate the (more port-
able) value function. value(’PATH’,,’ENVIRONMENT’) returns the path, for instance, but then I found
that w32expandenvironmentstrings was quite useful after all, so it’s back as of release 1.3.0.

The functions are provided in hopes that they will be useful, but there is no warranty.

1.1 Reporting Bugs

Theorem A: Every program can be reduced by at least one line.

Theorem B: Every program contains at least one bug.

Corollary: Every program can be reduced to one line which doesn’t work correctly.

w32funcs undergoes very little testing before new releases are shipped. I have not had the time to
produce a regression test, for instance, and although it is on my list of things to do, the pressures of work
and life keep me from doing it. Since the first release of w32funcs (1.0.0) in February 1998, there have

1

been surprisingly few bugs discovered, given the amount of testing it undergoes at this end. When bugs
are reported, I do my best to fix them and to get a new release out within a short time. My time tends to
be very tight, though, so I can’t make any guarantees.

If you do find a bug, an error in the documentation, or you simply have a suggestion for improving the
distribution, please send me details at ptjm@interlog.com. It’s useful to know the operating system you’re
using, the version of Regina, and the version of w32funcs, and to have a set of steps for reproducing the
bug.

If you are using w32funcs for a serious purpose and therefore take the time to produce a test suite for
your own use, I would appreciate it if you’d contribute it to the cause.

1.2 Using RxFuncAdd

All the routines in w32funcs can be loaded either directly using RxFuncAdd, or indirectly using w32-
LoadFuncs. RxFuncAdd takes three arguments – the name of the function as it will be used in the
rexx program, the name of the library from which to load the function, and the name of the function as it
appears in the library. This last argument should match the case of the actual function library (all function
names in w32funcs use lower-case only). The names of the functions in the rexx script itself can take any
case.

RxFuncAdd returns 0 on success, or 1 on failure. Regina has a function called RxFuncErrMsg which
can give useful information about the reason for a load failure. A few common reasons for failure are:

Path issues: w32util.dll needs to be in the path, or in the directory containing regina.exe.
Windows 95: early releases of windows 95 did not include msvcrt.dll, the C run-time library used by

w32funcs. This library is sometimes installed with applications software. It can also be obtained through
service packs, or from the Microsoft web site.

Rexx.exe: Regina includes two executables, one called ‘rexx’, and the other called ‘regina’. The
difference is that ‘rexx’ includes the Rexx interpreter as part of the executable, while ‘regina’ loads the
interpreter from a shared library. RxFuncAdd works only with the ‘regina’ version of the interpreter (the
‘rexx’ version is slightly faster, though).

1.3 Licencing

w32funcs is distributed free of charge in the hopes that it will be useful, but without any warranty. The
original code by Ataman and my modifications to it are distributed under the terms of the GNU Library
General Public License. As of version 1.3.1, my original code is distributed under the terms of the Mozilla
Public License. The precise details of the licence are found in the file MPL-1.0.txt in the distribution.

If you use the library purely as distributed by me, then you can cheerfully ignore the licencing change.
If you modify the source code or adopt portions of it in your own programs or libraries, you should be
aware of which licence applies to which code, and fulfill your obligations under the licences. I believe
that the restrictions placed by the Mozilla licence are less onerous than the ones in the GNU Library
licence, and they are more in the spirit in which I would like my work to be distributed.

Although there are no obligations or restrictions related to use of the library, I would prefer that
you do not use w32funcs in applications which cause injury or hardship to others. Also, if you derive a
significant monetary benefit from the use of w32funcs, please share a portion with someone less fortunate
(for instance, you could give money to Unicef).

1.4 Numeric Index Convention

Some functions in this library process stem variables using the ‘numeric index convention’. This is a
common method of treating stems as arrays with integer indices. The tail 0 contains the number of
elements in the array,n, and the tails 1 ton are the array elements. For instance, you can print all the
elements of an arraya with

2

do i = 1 to a.0
say a.i
end

2 Housekeeping Functions

2.1 W32Load/DropFuncs

Unlike the original Ataman functions, these w32 functions are not built-in to Regina. To use any of the
functions, they must be loaded using RxFuncAdd. If you are using more than one or two functions, it will
be more convenient to simply load all the functions by loading and calling w32LoadFuncs, as follows:

call rxfuncadd ’w32loadfuncs’, ’w32util’, ’w32loadfuncs’
call w32LoadFuncs

If you feel the need to unload the functions, you can do so by calling w32DropFuncs:

call w32DropFuncs

As long as w32DropFuncs has been loaded itself, you can safely call it, even if all the functions
you’ve loaded were loaded using RxFuncAdd. It will unload any functions which have been loaded,
and silently ignore the ones that haven’t been. I don’t know of any advantage to loading each function
individually over calling w32LoadFuncs.

2.2 W32Version

Beginning with version 1.2.4, the function w32version() returns a version tag, and the full path to the
utility library. The version tag has the formatversion.release.modification. It is separated from the file
name by a space. You may want to use the version number, for instance, to take alternate code paths if
there is a bug in some version of the library which you might have to support. The file name is meant to
help identify conflicts when more than one version of a library is on a machine.

parse value w32version() with ver ’.’ rel ’.’ mod file

say ’w32 functions loaded from’ file
if ver > 1 | rel > 1 | (rel = 1 & mod > 3) then

say ’huzzah!’

3 Error Messages

The functions generally report success or failure without giving details. Two functions are provided
which might be helpful in determining the cause of function failures, and one which might be helpful in
tracing the progress of your programs.

3.1 w32geterror

w32geterror() -> string

w32geterror returns error text related to the last failure of a WIN32 API function. This can sometimes
be helpful in debugging applications.

The format of the error message isnumber: text, wherenumberis the return code from the API func-
tion GetLastError(), andtext is the generic system error message for that error code, which is supposed
to be in the native language of the user.

3

3.2 w32olegeterror

w32olegeterror() -> string

w32olegeterror returns error text related to the last failure of the OLE functions. This can sometimes
be helpful in debugging applications. I expect the format of this error string to change in the future.

3.3 w32debug

w32debug(message) -> 0

w32debug sends its argument to a program which has registered as a debugger either for the system
or for your program. If there is no such program, the function does nothing. It can be used in conjunction
with a program such as DbgView from http://www.sysinternals.com to provide a rudimentary tracing
facility.

4 Registry Functions

The registry is a hierarchical database used to store configuration information. It is made up of keys, each
of which can contain one or more keys and values. If you think of the registry as a sort-of file system, the
keys correspond to directories, and the values to files. One uses registry functions by first opening a key,
querying or setting values using the key, and then closing the key. To get a feel for what the keys are all
about, run regedit (or regedt32) and look around.

There are four standard keys which are the roots of all the other keys. These four keys are always
open. They are identified by the strings HKEYLOCAL MACHINE, HKEY CLASSESROOT, HKEY
CURRENTUSER, and HKEYUSERS. Since the ‘HKEY’ prefix only exists to differentiate manifest
constants used to define these keys in the Windows SDK, they are optional in the Rexx interface (e.g.,
you can refer to the local machine key as LOCALMACHINE). All other keys must be opened, and the
‘key’ parameter returned from w32RegOpenKey or w32RegCreateKey must be used in any function call
referring to the key.

Each key and each value has a name, which must be unique within its key. The name of a value can
be an empty string. The names are not case sensitive.

You can use the registry to store configuration information for your applications. By convention, use
a location such as HKEYLOCAL MACHINE\Software\your company name\your application name.
Under some circumstances you can also change parameters for other people’s applications, but this is not
a good idea unless you know what you’re doing. You can also connect to registries on other machines,
which makes it possible to perform centralised configuration.

4.1 List of Registry Functions

w32regopenkey (key, [subkeyname])→ key: opens a key

w32regcreatekey (key, subkeyname)→ key: creates a key

w32regconnectregistry (hostname,key)→ key: open a registry on another machine

w32regclosekey (key)→ 0 or 1: closes a key

w32regqueryvalue (key, entry, [type], [stem])→ value: retrieves a value

w32regqueryvaluetype (key, entry)→ type: retrieves a value’s type

w32regsetvalue (hkey, entry, type, data, [stem])→ 0 or 1: sets a value

w32regdeletekey (hkey, subkeyname)→ 0 or 1: deletes a key

4

w32regdeletevalue (hkey, valuename)→ 0 or 1: deletes a value

w32regenumkey (hkey, [index], [stem])→ keyname: gets the names of a key’s keys

w32regenumvalue (hkey, [index], [stem])→ value: gets the names of a key’s values

w32regflushkey (hkey)→ 0 or 1: flushes values to the registry

w32reggetkeysecdesc (hkey)→ secdesc: gets a key’s security descriptor

w32regsetkeysecdesc (hkey, secdesc)→ 0 or 1: sets a key’s security descriptor

w32regqueryinfokey (hkey, infokey, [stem])→ desired info: retrieves a variety of information about a key

w32regsavekey (hkey, filename)→ 0 or 1: save a key and its sub-keys to a file

w32regrestorekey (hkey, filename)→ 0 or 1: restore a key and its subkeys from a file

w32regloadkey (hkey, subkey, filename)→ 0 or 1: attaches a ‘hive’ as a key;

w32regunloadkey (hkey, subkey)→ 0 or 1: detaches a hive

w32expandenvironmentstrings (string)→ string: expands environment variables in a string

4.2 Example

Here’s a script which sets Regina up to run files with extension .rex, from the command-line.

/* make Regina the default processor for .rex files */

call rxfuncadd ’w32addfuncs’, ’w32util’, ’w32addfuncs’
call w32addfuncs

/* here’s where regina is installed */
regexe=’c:\bin\regina.exe’

/* here’s the extension I want */
regext = ’.rex’

/* open up the classes root key, and see if there’s already a .rex
there */

crkey = w32RegOpenKey("CLASSES_ROOT", regext)
if rc = 0 then do

call w32RegCloseKey(crkey)
call charout , regext ’is already defined. Overwrite it? ’
pull yesno
if left(yesno,1) \= ’Y’ then exit 1
end

/* now create the necessary sub-keys. I’ll ignore rc until
we set the value */

crkey = w32RegCreateKey("CLASSES_ROOT", regext)
if rc then do

say ’failed to create HKEY_CLASSES_ROOT/’regext
exit 2
end

5

crskey = w32RegCreateKey(crkey, "Shell")
crsokey = w32RegCreateKey(crskey, "Open")
crsockey = w32RegCreateKey(crsokey, "Command")
if w32RegSetValue(crsockey, ’’, "REG_SZ", regexe ’%1 %*’) then do

say ’failed to set up the registry key’
exit 3
end

call w32DropFuncs

exit 0

4.3 w32regopenkey

w32regopenkey(key, [subkeyname]) -> key

Opens a sub-key of an already-open key, or opens a new handle to an already-open key.keycan be one
of the special key names listed above, or the return code from a previous call to one of the key opening
routines. Ifsubkeynameis not specified, a new handle to the key specified bykeywill be returned.

If the function is not successful, it returns 0.

4.4 w32regcreatekey

w32regcreatekey(key, subkeyname) -> key

Creates or opens a sub-key of an already-open key.keycan be one of the special key names listed in
section 4 above, or the return code from a previous call to one of the key opening routines. If the sub-key
already exists, it is opened, rather than created.

If the function is not successful, it returns 0.

4.5 w32regconnectregistry

w32regconnectregistry(hostname,key) -> key

Opens a connection to a registry key (only LOCALMACHINE and USERS are allowed) on the
machine specified byhostname. Returns a handle to the key.

If the function is not successful, it returns 0.

4.6 w32regclosekey

w32regclosekey(key) -> 0 or 1

Closes a previously opened registry key.keymust be the return code from a previous call to one of
the key opening routines. If the function is not successful, it returns 1, otherwise, it returns 0.

4.7 w32regqueryvalue

w32regqueryvalue(key, entry, [{type}], [{stem}]) -> the value

Retrieves the value of the value namedentry from the key identified bykey. If the third argument is
specified, it must evaluate to a variable name, and the type of the value will be written to that variable.
See w32regqueryvaluetype, section 4.8, for a list of the possible types. If thestemvariable is specified,
it must evaluate to the name of a stem variable. If the value is of type REGMULTI SZ, the values will

6

be written to the stem variable, with the number of values in stem.0. Other values are always returned as
strings, regardless of the type of data in the registry. For instance, a REGDWORD value will be returned
as an ordinary rexx integer, rather than as a 4-byte binary value.

If there is no such entry in the key, sets RC to 1 and returns the empty string. Otherwise it sets RC to
0.

4.8 w32regqueryvaluetype

w32regqueryvaluetype(key, entry) -> type

Returns the type of the value namedentry from the key identified bykey. There is no reason to use
this function instead of the optional argument to w32regqueryvalue.

The possible types are

REG BINARY binary data

REG DWORD integer data

REG DWORD BIG ENDIAN integer data

REG EXPAND SZ character data with environment variables

REG LINK symbolic link to another registry entry

REG MULTI SZ multiple-string character data

REG NONE no type

REG RESOURCELIST resource list(?)

REG SZ character data

If there is no such entry in the key, sets RC to 1 and returns the empty string. Otherwise it sets RC to
0.

4.9 w32regsetvalue

w32regsetvalue(hkey, entry, type, data [, stemdata]) -> 0 or 1

Prefacatory remark: someone at Microsoft decided that the hierarchical nodes in the registry should
be called keys, the key part of the key/value pairs should be called values and there should be no special
name for the value part of the key/value pairs. That is the reason the next sentence reads the way it does.

Sets the data part of the value identified byentry in the key identified byhkey, or creates a new value.
typemust be one of the types specified in section 4.8 above, and must match the type of the value if it
already exists in the registry.stemdatais the name of a stem variable which contains data for a REG
MULTI SZ value. It is ignored for other types.

If the function is not successful, returns 1, otherwise it returns 0.
Data formats: REGSZ, REGEXPAND SZ, REGDWORD and REGDWORD BIG ENDIAN data

are entered as normal strings. The DWORD types should evaluate to integers. If the type is REGMULTI
SZ and the stemdata argument is passed, the .0 element of the stem should hold the number of strings,n,
and elements 1 ton should contain normal strings. Otherwise it will be treated as binary data. Other data
types will be treated as binary data, which should be entered in hex. That is, the string 1234 would have
the format1234 if it were to be saved as REGSZ, but31323334 if it were to be saved as binary data.

7

4.10 w32regdeletekey

w32regdeletekey(hkey, subkeyname) -> 0 or 1

Deletes the sub-key namedsubkeyname. Returns 0 on success or 1 on failure. NT’s delete key
function will not delete keys unless they have no sub-keys. On Windows 95 and 98, keys can be deleted
if they have sub-keys. As of version 1.2.3 of w32funcs, w32regdeletekey deletes keys recursively on all
systems, except possibly Windows 2000.

4.11 w32regdeletevalue

w32regdeletevalue(hkey, valuename) -> 0 or 1

Deletes the value namedvaluename. Returns 0 on success or 1 on failure.

4.12 w32regenumkey

w32regenumkey(hkey, [index], [{stem}]) -> keyname

Either retrieves the name of theindexth key fromhkeyand returns it, or retrieves the names of all keys
in hkeyand puts them in the stem variable identified bystem. stem.0 is set to the number of keys.

If the stem variable is used, returns 0 for success or 1 for failure. Otherwise, sets RC to 0 for success
or 1 for failure.

4.13 w32regenumvalue

w32regenumvalue(hkey, [index], [{stem}]) -> value, 0 or 1 (sets rc)

Either retrieves the name of theindexth value fromhkeyand returns it, or retrieves the names of all
values inhkeyand puts them in the stem variable identified bystem. stem.0 is set to the number of values.

If the stem variable is used, returns 0 for success or 1 for failure. Otherwise, sets RC to 0 for success
or 1 for failure.

4.14 w32regflushkey

w32regflushkey(hkey) -> 0 or 1

Writes changes to ahkeyto the registry. Normally, the registry routines cache changes, and they’re
not guaranteed to be written to disk at any particular time. Call w32regflushkey to ensure that the changes
are written out.

Returns 0 for success or 1 for failure.

4.15 w32reggetkeysecdesc

w32reggetkeysecdesc(hkey) -> secdesc

Retrieves a pointer to a C structure which you absolutely cannot alter using Rexx. This function could
be used in conjunction with w32regsetkeydesc to set a registry entry’s security to be the same as some
other registry entry’s security. Otherwise it’s useless.

Sets RC to 0 for success or 1 for failure.

8

4.16 w32regsetkeysecdesc

w32regsetkeysecdesc(hkey, secdesc) -> 0 or 1

Sets the security forhkeyaccording to a C structure pointed to bysecdesc. This function could be
used in conjunction with w32reggetkeydesc to set a registry entry’s security to be the same as some other
registry entry’s security. Otherwise it’s useless.

Returns 0 for success or 1 for failure.

4.17 w32regqueryinfokey

w32regqueryinfokey(hkey, infokey, [{stem}]) -> desired info, 0 or 1

Retrieves information about a key.infokeycan be one of NumSubKeys, MaxSubKeyName, NumVal-
ues, MaxValueName, or MaxValueData, meaning to return the number of subkeys, maximum length of
a sub-key, number of values, maximum length of a value’s name, or maximum length of a value’s data,
respectively. If the optional third argument is specified, it must be a stem variable name, and the members
NumSubKeys, MaxSubKeyName, NumValues, MaxValueName, and MaxValueData of the stem variable
will be set to the corresponding values instead.

If you use the stem variable, returns 0 for success or 1 for failure. Otherwise it sets RC to these values.

4.18 w32regsavekey

w32regsavekey(hkey, filename) -> 0 or 1

Saves the contents ofhkeyand its sub-keys to the file specified byfilename.
Returns 0 for success or 1 for failure.

4.19 w32regrestorekey

w32regrestorekey(hkey, filename) -> 0 or 1

Adds the sub-keys and values listed in the file specified byfilenameto hkey.
Returns 0 for success or 1 for failure.

4.20 w32regloadkey

w32regloadkey(hkey, subkey, filename) -> 0 or 1

Creates a new sub-key namedsubkeyunder keyhkey, which points at the file specified byfilename.
hkeymust be one of LOCALMACHINE, USERS, or a key returned by w32RegConnectRegistry. The
file must have been created by w32RegSaveKey. They call a key created with w32RegLoadKey a ‘hive’.
The data is stored n the filefilename, rather than the normal registry files.

Historically, this function hasn’t worked correctly, but it can be useful if you need to transfer registry
information between two machines or access registry information associated with a defunct user. You
need to have both the registry data file (e.g.software) and its associated log file (software.log).

Returns 0 for success or 1 for failure.

4.21 w32regunloadkey

w32regunloadkey(hkey, subkeyname) -> 0 or 1

Removes the sub-key calledsubkeynamefrom the registry tree. The sub-key must be a hive (i.e., it
must have been created using w32regloadkey).

Returns 0 for success or 1 for failure.

9

4.22 w32expandenvironmentstrings

w32expandenvironmentstrings(string) -> string

Returns the input string with all environment variables replaced by their values. The environment
variables must be surrounded by percent-signs. The function is useful for processing registry entries
which include embedded environment variables.

5 Event Log Functions

The event log is a centralised location for writing information about the progress made, and tribulations
faced, by applications. In order to log events to the event log, you need to create an executable with
message identifiers in its resources, and put the appropriate information in the registry. Doing all that
goes beyond the scope of this documentation.

Once the messages have been installed, you can use the event log functions to write and retrieve event
information.

5.1 List of Event Log Functions

w32openeventlog (host, source)→ handle, or 0: open an event log

w32closeeventlog (handle)→ 0 or 1: close an event log

w32getnumberofeventlogrecords (handle)→ the number, or -1: returns the number of events in a log

w32getoldesteventlogrecord (handle)→ the number, or -1: returns the number of the first event in a log

w32openbackupeventlog ([hostname], filename)→ handle, or 0: opens an event log back-up

w32backupeventlog (handle, filename)→ 0 or 1: creates a back-up of an event log

w32cleareventlog (handle[, filename])→ 0 or 1: clears the contents of an event log

w32findeventlogentry (handle, recnum, [stem])→ 0 or 1: retrieves the information for an event

w32geteventid ()→ id: returns the ID for the last event returned by w32findeventlogentry

w32geteventtype ()→ type: returns the type for the last event returned by w32findeventlogentry

w32geteventcategory ()→ category: returns the type for the last event returned by w32findeventlogentry

w32geteventnumstrings ()→ num strings: returns the number of arguments for the last event returned by
w32findeventlogentry

w32geteventtimewritten ()→ time written: returns the time written for the last event returned by w32findeventlogentry

w32geteventtimegenerated ()→ time generated: returns the time generated for the last event returned by w32findeventlogentry

w32geteventstring (index)→ string: returns theindexth argument for the last event returned by w32findeventlogentry

w32geteventdata ()→ data: returns the message for the last event returned by w32findeventlogentry

w32writeeventlog ([hostname], source, [eventtype], [category], eventid, [data], [string1, ...])→ 0 or 1: writes an
event log entry

10

5.2 w32openeventlog

w32openeventlog(host, source) -> handle, or 0

Opens the event log indicated bysourceon hosthost. If host is omitted, uses the local machine.
Source is an entry from somewhere under the key LOCALMACHINE\System\CurrentControlSet\Ser-
vices\Eventlog. For instance, it could be Application, Security, System, DrWatson, MSSQLServer, or
some other application-dependent value.

On failure, it returns 0, otherwise it returns a handle to the event log for use in the event reading
functions.

5.3 w32closeeventlog

w32closeeventlog(handle) -> 0 or 1

Closes an event log previously opened using w32openeventlog. Returns 0 on success or 1 on failure.

5.4 w32getnumberofeventlogrecords

w32getnumberofeventlogrecords(handle) -> the number, or -1

Returns the number of events in the log referred to by handle. On error, returns -1.

5.5 w32getoldesteventlogrecord

w32getoldesteventlogrecord(handle) -> the number, or -1

Returns the number of the oldest event in the log referred to by handle. Events are retrieved by record
number, which doesn’t necessarily start at 1. There are w32getnumberofeventlogrecords() records, num-
bered from w32getoldesteventlogrecord() to w32getnumberofeventlogrecords()–1. On error, returns -1.

5.6 w32openbackupeventlog

w32openbackupeventlog([hostname], filename) -> handle, or 0

Opens an event log stored in the file referred to byfilename. If hostnameis not specified, the file is
on the current host.

Returns 0 on failure, or a handle for use in the event reading functions on success.

5.7 w32backupeventlog

w32backupeventlog(handle, filename) -> 0 or 1

Saves an open event log to a file. Do this before clearing the event log. w32backupeventlog() will
generally create a smaller output file than using the optional filename argument to w32cleareventlog().

Returns 1 on failure or 0 on success.

5.8 w32cleareventlog

w32cleareventlog(handle[, filename]) -> 0 or 1

Clears the contents of an event log, optionally backing it up first. w32backupeventlog() will generally
create a smaller output file than using the optional filename argument to w32cleareventlog().

Returns 1 on failure or 0 on success.

11

5.9 w32findeventlogentry

w32findeventlogentry(handle, recnum, [{stem}]) -> 0 or 1

Retrieve therecnumth record (see section 5.5) from the event log referred to byhandle. If the optional
third argument is specified, it must be the name of a stem which will be populated with the event log
information. Currently the indexes which are populated are:source, id, type, category, numstrings,
timewritten, timegenerated, data, description, andstrings.

id is the numeric identifier of the message. Together withsource, it identifies the message.Strings
is a stem variable containing the events arguments.strings.0 is the same asnumstrings, andstrings.1
to strings.numstrings are the arguments.descriptiongives the full formatted text for the message in
the default language of the user.categorygives the application-specific category of the message, in the
default language of the user, or ‘None’ if there is no application-specified category.typegives the type,
which is one of ‘Success’, ‘Information’, ‘Warning’, ‘Error’, ‘Success Audit’, or ‘Failure Audit’.

If the optional third argument is not specified, the event information can be retrieved using the
w32getevent* routines. The format of the values returned by the w32getevent* routines is different from
the format of the values returned by this routine. For instance,timewrittenandtimegeneratedmembers
is yyyymmdd hh:mm:ss (that is, date(’S’) time(’N’) format), and thetypeandcategoryfields have their
values converted to text. There are no corresponding w32getevent* functions forsourceor description,
and none will be added.

Returns 1 on failure or 0 on success.

5.10 w32geteventid

w32geteventid() -> id

Returns the event id for the record retrieved in the last call to w32findeventlogentry. Use the stem
argument to w32findeventlogentry instead. The id specifies the message text which should be used to
display the event, plus a mask which indicates the kind of error. To get the same event id as returned by
the event viewer and w32findeventlogentry, do something like this:

idx = x2c(right(d2x(w32geteventid()),8,’0’))
id = c2d(bitand(x2c(’0000ffff’),idx))

On success, sets RC to 0, and on failure, sets it to 1.

5.11 w32geteventtype

w32geteventtype() -> type

Returns the event type for the record retrieved in the last call to w32findeventlogentry. Use the stem
argument to w32findeventlogentry instead.

The possible values are 0: success, 1: error, 2: warning, 4: information, 8: audit success, and 16:
audit failure.

On success, sets RC to 0, and on failure, sets it to 1.

5.12 w32geteventcategory

w32geteventcategory() -> category

Returns the event category for the record retrieved in the last call to w32findeventlogentry. Use the
stem argument to w32findeventlogentry instead.

On success, sets RC to 0, and on failure, sets it to 1.

12

5.13 w32geteventnumstrings

w32geteventnumstrings() -> num strings

Returns the number of arguments for the record retrieved in the last call to w32findeventlogentry. Use
the stem argument to w32findeventlogentry instead.

On success, sets RC to 0, and on failure, sets it to 1.

5.14 w32geteventtimewritten

w32geteventtimewritten() -> time written

Returns the time the record retrieved in the last call to w32findeventlogentry was written to the log.
Use the stem argument to w32findeventlogentry instead.

The format returned by w32geteventtimewritten is ddd mmm dd yy:mm:ss yyyy, eg Fri Sep 26
17:42:23 1997.

On success, sets RC to 0, and on failure, sets it to 1.

5.15 w32geteventtimegenerated

w32geteventtimegenerated() -> time generated

Returns the time the record retrieved in the last call to w32findeventlogentry was generated. Use the
stem argument to w32findeventlogentry instead.

The format returned by w32geteventtimegenerated is ddd mmm dd yy:mm:ss yyyy, eg Fri Sep 26
17:42:23 1997.

On success, sets RC to 0, and on failure, sets it to 1.

5.16 w32geteventstring

w32geteventstring(index) -> string

Returns theindexth argument from the record retrieved in the last call to w32findeventlogentry. Use
the stem argument to w32findeventlogentry instead.

On success, sets RC to 0, and on failure, sets it to 1.

5.17 w32geteventdata

w32geteventdata() -> data

Returns the optinal binary data from the record retrieved in the last call to w32findeventlogentry. Use
the stem argument to w32findeventlogentry instead.

On success, sets RC to 0, and on failure, sets it to 1.

5.18 w32writeeventlog

w32writeeventlog([hostname], source, [eventtype], [category],
eventid, [data], [string1, ...]) -> 0 or 1

Writes an entry for applicationsourceto the event log for machinehostname. Hostnameis the name
of a machine with the event log, using the windows network naming convention.Sourceis the name
under which a message catalogue has been registered.

Eventtypeindicates the severity of the event. It can be one of ‘error’, ’warning’, ‘information’, or the
corresponding numeric values 1, 2, and 4. The default value is ‘error’.

13

Categoryis an application-specific identifier which describes the type of message, or the application
component which generated the message. If you define separate categories, you should create a category
message file. The default value is 0.

Eventidis the numeric identifier of the event being logged.
Data is arbitrary binary data to store with the message. This might include information required to

debug programming errors.
All arguments afterdata are strings which will be interpolated into the error message by the event

viewer.
See section 5.19 for information about creating and registering message files. See http://www.kixscripts.com/

resources/eventlogdll.asp for a generic event log message file (thanks to Mark Vilez for letting me know
about this). I can’t assist in using it, as I haven’t looked at it yet.

5.19 Creating message files

To use w32WriteEvent effectively, you need to be able to create message files, which are dynamic link
libraries containing specific resources. This is normally done using tools provided with your development
environment: a message compiler, a resource compiler, and a linker.

If you have, for instance, the Microsoft C compiler, the steps are to create a message source file as
described below, create a binary resource from it, and link the resource into a .dll. This set of commands
is sufficient:

mc x.mc
rc x.rc
link /dll x.res msvcrt.lib

If you don’t have a compiler, some of the necessary tools are available for free as part of the MinGW
distribution of the GNU Compiler Collection. MinGW doesn’t include a message compiler, though, so
I’ve written and included one with this package: ptjmc. The equivalent command line is:

ptjmc x.mc
windres x.rc x.o
ld -dll x.o -o x.dll

5.19.1 Message Definitions

The remainder of this section describes the file format understood by ptjmc, which is intended to be a
compatible subset of the file format understood by the microsoft message compiler.

A message file consists of optional message type and category definitions, followed by message
definitions. There may be comments interspersed with the definitions.

Comments begin with a semi-colon (;) and continue to the end of the line.
The message type definition allows you to define symbolic names for the message type (which is

called severity here). The format is

SeverityNames=(NoneName=0 InfoName=3 WarnName=2 ErrorName=1)

WhereNoneName et alare to be replaced by the names you want to use. If you prefer, the numeric values
can be given in hexadecimal notation, preceded by 0x, but the maximum value is 3 so this simply results
in more typing. No space is permitted around the equals signs. Any amount of white space can separate
the definitions. ‘None’, ‘Success’, ‘Warning’, and ‘Error’ always work unless you redefine them.

The category definition allows you to define symbolic names for the category (which is called facility
here). If you use this feature, you should define message ids with severity Success and no facility for each
facility name and register the library as a category message file. The facility names should be numbered
sequentially starting at 1.

Message definitions have this format:

14

MessageId=<decimal number>
Severity=<message type>
Facility=<category>
SymbolicName=<valid C identifier>
Language=English
<Message text
which may take more than one line>
.

Severity, Facility, and SymbolicName are all optional. The value of Language is ignored, however
the language entry must be present as it introduces the message text. Only one language can be entered
per file. If you need to create a multi-lingual message file, you either need to maintain the messages for
each language in separate files and combine them, or invest in a better development environment.

The severity name must be one of the entries in the SeverityNames definition, or one of the default
names mentioned above. The default is ‘information’. The facility name must be one of the entries in the
FacilityNames definition. The default is 0.

The SymbolicName is used in the C header file mentioned below, it must follow the rules for C
symbolic names if you want to use this header file.

The message text is mostly just text, terminated by a period on a line by itself. Any newlines in the
text are converted to spaces. Within the text, % is treated as a special character. It and the characters
following it are replaced when the message is formatted according to the following rules:

Text Replaced by
%% Per-cent sign (%)
%. Period (.). This is to allow the output to show a period on a line by itself.
%n Line break.
%! Exclamation point (!). This is to allow an exclamation point following

a parameter substitution.
%n Thenth string parameter logged to the event log.
%n!fmt! The nth string parameter logged to the event log, formatted according

to fmt. fmt is a printf format specifier. Useful values are s (equivalent
to leaving off the format specifier), –ls (left-justify the parameter within
a spacel characters wide), and 0ls (right-justify the parameter within a
spacel characters wide, and pad with zeros).

%0 Ends the format string. Without this, there is always a trailing space (or
new-line if you use microsoft’s message compiler). This is a good idea
after category names.

5.19.2 Output Files

Given an input filefile.mc, ptjmc generates three output files. None of them are needed once the message
dll has been built.

file.h is a C-language include file which defines symbolic constants for each message having a Sym-
bolicName entry. This simplifies the process of logging events from C programs, since the message id
passed to the API is an amalgam of the severity, category, and message id. It’s not needed for rexx
programming.

file.rc is the resource compiler input file. It defines a default language and defines binary resource 1
to be the third output file.

file.bin is the compiled message file.

15

6 OLE Automation

OLE Automation is a mechanism which allows applications to be scripted using any scripting language.
That is, an application which supports automation can execute macros written in Rexx, even if the original
application programmer has never heard of Rexx.

To use the automation functions, you need to know what objects and methods are supported by the
application you want to automate. Sometimes, the application’s author will provide you with documen-
tation which explains what objects, methods, and attributes are available to you.

The automation interface may be enhanced in the future to provide more information about the objects
supported by applications.

6.1 List of Automation Functions

w32createobject (ProgramId)→ handle or 0

w32releaseobject (handle[, handle, ...])→ 0 (success) or 1 (failure)

w32olecleanup ()→ nothing

w32getobject ([FileName], [ProgramId])→ handle or 0

w32olegetid (handle, name[, name2, ...])→ dispid [dispid2 ...]

w32callfunc (handle, name[, typelist, parm1, ...])→ value

w32callproc (handle, name[, typelist, parm1, ...])→ 0 or 1

w32getproperty (handle, name[,typelist, parm1, ...]))→ value

w32getsubobj (handle, name[, typelist, parm1, ...])→ handle or 0

w32putproperty (object, name, typelist, value)→ 0 or 1

w32olegetarray (handle, name, stemname)→ 0 or 1

w32oleputarray (handle, name, stemname)→ 0 or 1 [not implemented]

w32olenext (object[, skipcount)→ handle or 0

w32olegeterror ()→ string

6.2 w32createobject

w32createobject(ProgramId) -> handle or 0

Given a registered object name, open an object of that type, and return its handle. Returns 0 on
failure. You find out this object name in the same place you find out the method names and so forth.
If you feel like hacking (what could go wrong?), look at the sub-keys of the CLASSESROOT registry
key. programIdcan be given as a name (as in ‘DXImageTransform.Microsoft.Chroma’) or as a CLSID
(‘421516C1-3CF8-11D2-952A-00C04FA34F05’).

16

6.3 w32releaseobject

w32releaseobject(handle[,handle, ...]) -> 0 (success) or 1 (failure)

Releases one or more handles acquired with w32createobject, w32getobject, or w32getsubobj.
It’s very important that you release every object that you get a handle to. If you don’t, you won’t be

able to close the applications that implement the objects, and it will cause problems. w32olecleanup()
can be called to release all handles to OLE objects. w32releaseobject() is useful for portability with
releases prior to 1.3.0 and for releasing objects as soon as they are no longer needed.

The ability to specify more than one handle in a single call is a new convenience feature in version
1.3.1.

Returns 0 on success or 1 on failure.

6.4 w32olecleanup

w32olecleanup()

Releases all handles acquired with w32createobject, w32getobject, or w32getsubobj. It’s very impor-
tant that you release every object that you get a handle to. If you don’t, you won’t be able to close the
applications that implements the objects, and it will cause problems. Regina itself may fail to exit if it
holds references to OLE objects. Calling w32olecleanup at the end of each program ensures that this will
not happen.

There is no return code from w32olecleanup. The function first appeared in version 1.3.0, so should
not be used if compatibility with earlier releases is required.

6.5 w32getobject

w32getobject([FileName], [ProgramId]) -> handle or 0

Given an existing file, or an ID of a running program, opens the relevant application and returns a
handle. See w32createobject, section 6.2 for a discussion ofprogramID. Note thatFileNameis generally
speaking the name of a data file associated with an application. For instance, it might be the name of a
spreadsheet data file, not the name of the spreadsheet executable.

wrd = w32GetObject(’mydocument.doc’)
excl = w32GetObject(, ’Excel.Application’)

6.6 w32olegetid

w32olegetid(handle, name[, name2, ...]) -> dispid [dispid2 ...]

Given an object handle returned by one of the functions that returns object handles, return the dispid
for one or more property or method names belonging to that object. The dispid can be used in place of
the name when calling w32GetProperty and the other functions that take a name parameter.

Automation uses numeric identifiers to distinguish between different methods and properties. When
an automation function, for instance, is called using its name, the library has to first look up the nu-
meric identifier associated with the name and then call the function. Using identifiers instead measurably
improves the performance of programs which use a lot of automation function calls.

More than one name can be passed to w32OleGetID, in which case more than one dispid is returned.
These can be sorted out, for instance, using a parse template. There is no real performance penalty for
making separate calls to w32OleGetID for each name.

The format of a dispid is @:[four binary bytes]. The binary bytes give the numeric identifier for the
name, which will be the same every time for the same version of the same application. Nice application

17

vendors will have the identifier be the same for different versions of the same application. It may be
beneficial to save the dispids in one run of an application, and then ‘hard code’ them in subsequent runs.
For instance,

/* test run */
do until val = 0

val = w32OleNext(hnd)
id = w32OleGetID(val, ’MyProp’)
call lineout ’x.rex’, ’id = "’ || c2x(id) ||’"x’
call w32callfunc val, id
end

/* production run */
id = "403a27000000"x /* good for v1.2 of myapp */

do until val = 0
val = w32OleNext(hnd)
call w32callfunc val, id
end

6.7 w32callfunc

w32callfunc(handle, name[, typelist, parm1, ...]) -> value

Given a valid handle to an object, the name of a method of this object which returns a value, and some
parameters, executes the method and gives its return code. Sets RC to 1 on failure.

As of version 1.5.1,namecan be a dot-delimited path to a method of a sub-object. This can be helpful
in situations where a deep tree of objects needs to be traversed to access an isolated method. For instance,
rather than

app = w32CreateObject(’Example.ptjm’)
alpha = w32GetSubObj(app, ’Alpha’)
bravo = w32GetSubObj(alpha, ’Bravo’)
charlie = w32GetSubObj(bravo, ’Charlie’)
delta = w32CallFunc(charlie, ’Delta’,, ’Echo’, ’Foxtrot’)
call w32ReleaseObject alpha, bravo, charlie

one could have

app = w32CreateObject(’Example.ptjm’)
delta = w32CallFunc(charlie, ’Alpha.Bravo.Charlie.Delta’,, ’Echo’, ’Foxtrot’)

In addition to being more compact, this approach will be faster in circumstances where you need only a
single method or property of the sub-object.

typelist is a string in which each character corresponds to a parameter of the method, and it gives
the type of the parameter. If no typelist is given, all parameters are assumed to be strings.Typelistis
only necessary in situations where the type of the argument is ambiguous or is an array. For instance, if
the argument can be either a string (say, a document name) or an integer (say, an index into an array of
documents), there’s no way to tell which is intended. The types are:

a array result. This must be the first argument to a function that returns an array of values. The
corresponding argument must be the name of a stem, into which the array values returned by the
OLE function will be placed. Note that this functionality is modified from some contributed code
and is untested in its current form in version 1.5.1. I would appreciate some test cases;

18

A array argument. The corresponding argument must be the name of a stem, from which the array
values will be taken. This functionality is currently unimplemented. I would appreciate some test
cases;

b boolean (VTBOOL);

c currency (VTCY);

d date (VTDATE);

i short integer (VTI2);

I integer (VT I4);

o object to dispatch (VTDISPATCH) (the argument should have been returned from w32GetSubObj);

r float (VT R4);

R double (VTR8);

s string.

6.8 w32callproc

w32callproc(handle, name[, typelist, parm1, ...]) -> 0 or 1

Given a valid handle to an object, the name of a method of this object which does not return a value,
and some parameters, executes the method. Sets RC to 1 and returns 1 on failure, 0 on success.

See w32callfunc, section 6.7, for a discussion ofnameandtypelist.

6.9 w32getproperty

w32getproperty(handle, name[, typelist, parm1, ...]) -> value

Given a valid handle to an object and the name of a property of this object, returns the value of the
property. Sets RC to 1 and returns 1 on failure, 0 on success.

Some properties allow non-default values to be retrieved by specifying parameters. As of version
1.3.0, it’s possible to get at these values by specifying atypelist(see section 6.7) and parameters. See the
same section for a discussion ofname.

When a property is an object, use w32getsubobj to retrieve it.

6.10 w32getsubobj

w32getsubobj(handle, name[, typelist, parm1, ...]) -> handle or 0

Given a valid handle to an object, the name of a method or property of this object which returns
another object, and some (possibly optional) parameters, executes the method (or evaluates the property)
and returns a handle to the resulting object. Sets RC to 1 on failure.

See w32callfunc, section 6.7, for a discussion of typelist.

6.11 w32putproperty

w32putproperty(object, name, typelist, value) -> 0 or 1

Given a valid handle to an object, the name of a property of this object, a typelist, and a value, sets
the value of the property.Typelistis not needed if the property is string-valued. See w32callfunc, section
6.7 for discussions of thenameandtypelistarguments. Returns 0 on success and 1 on failure, and sets
RC to the same value.

19

6.12 w32olegetarray

w32olegetarray(object, name, stemname) -> 0 or 1

Note that this function is modified from code contributed by Alan Insley, and has not been tested in
its current state. If you need to use it, please let me know if it works, and send me a test case.

Given a valid handle to an object, the name of a property which returns an array, and the name of
a stem variable, sets the stem to match the array. If the array is one-dimensional, the stem follows the
numeric index convention as discussed in section 1.4. If the array has more than one dimension, the
stem follows a natural extension of the numeric index convention.stem.0 holds the cardinality of the first
dimension,stem.0.0 holds the cardinality of the second dimension, and so forth. For a three-dimensional
array,stem.i.j.k holds the element indexed byi, j, andk.

The only way to determine the dimension of one of these stems is to keep adding .0 to the stem
name until it’s no longer a number. I feel this is not a problem, since one ordinarily needs to know the
cardinality of an array before one can use it.

Returns 0 on success and 1 on failure, and sets RC to the same value.

6.13 w32oleputarray

w32oleputarray(object, name, stemname) -> 0 or 1

This function has not yet been implemented. I’d appreciate examples of array properties so that I can
test it out.

Given a valid handle to an object, the name of an array property of this object, and the name of the
stem, sets the property to match the stem. See the previous section for a discussion of the format of the
array.

6.14 w32olenext

w32olenext(object[, skipcount) -> handle or 0

Given a handle to a collection object, return the next object in the collection. Ifskipcountis ’Reset’
(only the first character is signficant), the collection starts over from the beginning. Ifskipcountis a
positive integer, that many entries in the collection are skipped.

Collection objects usually have a property called ‘Count’ and a method called ‘Item’, which takes
an integer argument and returns the corresponding item in the collection. w32olenext() is an alternative
way to iterate through these collections. In some cases, the nefarious cretins implementing the collection
object don’t bother providing ‘Count’ and ‘Item’, and w32olenext() is the only way to iterate through the
collection. It corresponds to Visual Basic’s ‘foreach’ operator.

You should iterate through the collection completely (i.e., until w32olenext() returns 0), to ensure
that all the objects referenced along the way are released.

6.15 w32olegeterror

w32olegeterror() -> string

w32olegeterror() returns error text related to the last failure of the OLE functions. This can sometimes
be helpful in debugging applications. I expect the format of this error string to change in the future.

20

6.16 getoleclass Type Library ‘Browser’

Applications which provide Automation interfaces sometimes document them using a set of OLE inter-
faces called a type library. A type library can be exported from a physical file, perhaps with the extension
.tlb, or the extension .olb, or even the extension .dll, or by the Automation dispatch interface itself.

Getoleclass is a sort-of browser for type libraries. It takes as arguments either the program id of
an Automation interface or the name of a type library file, and it writes information about the classes
defined by that interface to the standard output. For instance, the classes defined by Microsoft Word can
be written to a file with the command

getoleclass \msoffice\office\msword8.olb > word.classes

or with the command

getoleclass Word.Application > word.classes

More than one type library name can be put on the command line at a time, and wildcards can be
used when dealing with file names, so you could have

getoleclass \winnt\system32*.dll > fishing.classes

which would list all the classes defined in .dll files in the system32 directory.
The output format should be self-explanatory for the most part, but I suppose it helps to understand

it if you wrote the program in the first place. I find it useful as a quick-reference listing of methods and
properties. The remainder of this section gives a brief description of the output.

Each interface starts with two equal signs on a line by themselves, followed by the name of the type
library. If the library was extracted from a file, the name is given as ‘libraryfilename’, while if it was
extracted from an automation interface, the name is given as ‘classprogid’.

Following the interface name is the definition of each class defined in the type library. Each definition
starts with ‘Typetypename’, and is followed by a list of the constants defined by that type, under the
heading ‘Constants:’, a list of the properties which can be accessed without arguments, under the heading
‘Properties:’, and a list of the properties which require arguments and the methods, all under the heading
‘Methods:’.

Each constant definition consists of the name assigned to a particular value, followed by an equals
sign, followed by the numeric value. For instance, if you want to set a property to ‘msoConnectorElbow’,
because the documentation says that this will give you the effect you desire, you can copy the line
‘msoConnectorElbow = 2’ from the getoleclass output into your program.

Each property definition consists of the name of the property, followed by (in parentheses), the word
‘read’ to indicate that the property can be read, the word ‘write’ to indicate that the property can be set,
or ‘read/write’ to indicate that the property can be both read and set, and the type of the property.

Each method definition consists of the name of the method, followed by, in parentheses, a comma-
delimited list of arguments, with the format ‘name type’, followed by the type returned by the method.
Optional arguments are in brackets.

The types which can be returned are ‘number’, meaning a number of some sort, ‘date’, meaning a date
in the format given by the ‘short’ date and time formats in your nationalisation settings, ‘string’, meaning
a character string, ‘object’, meaning an unspecified object (to pass this as an argument, you must have a
handle created using w32GetSubObj), ‘boolean’, meaning –1 for ‘true’ or 0 for ‘false’, ‘many’, meaning
more than one type is acceptable, ‘unknown’, which usually means some unspecified object type, or one
of the types defined in the type library. Finally, some methods are procedures which return no value, so
they are followed by the text ‘no value’.

Watch out for property, method, and type names which start with an underscore. They generally indi-
cate that I’m not handling something properly. The specific situations of which I’m aware areNewEnum,
which can show up as either a method or a property returning ‘unknown’. You can’t useNewEnum di-
rectly – it indicates that the type is a collection which can be enumerated using w32OleNext. The return

21

type will generally be the same as the return type of the ‘Item’ method. Type names which start with an
underscore seem to always be invisible subsidiaries of some other class. For instance, in Microsoft Word,
there’s a class called ‘Document’ which has two subsidiariy classes, ‘DocumentEvents’ and ‘Document’.
‘ Document’ gives the real methods and properties for the document class, but getoleclass doesn’t handle
this correctly. Sometimes, the definition of a subsidiary type is nowhere near the definition of its parent
type, so if you need the definition of a type which apparently has no body, look for one with the same
name, but starting with an underscore.

Properties and methods are really just different kinds of function calls, and sometimes properties are
defined as taking arguments. When this happens, getoleclass lists them as methods. Sometimes it will
list them twice, with different sets of arguments. I generally find that properties which are defined this
way return an object of some sort, so I use w32GetSubObj to retrieve them, and the distinction between
properties and methods doesn’t matter. For other cases, all I can say is that the application-supplied
documentation is probably more useful than the output of getoleclass.

Here are two of the five-hundred or so classes defined in msword8.olb.

Type ConnectorFormat
Properties:

Application (read Application)
Creator (read number)
BeginConnected (read MsoTriState)
BeginConnectedShape (read Shape)
BeginConnectionSite (read number)
EndConnected (read MsoTriState)
EndConnectedShape (read Shape)
EndConnectionSite (read number)
Parent (read object)
Type (read/write MsoConnectorType)

Methods:
BeginConnect(ConnectedShape Shape, ConnectionSite number) no value
BeginDisconnect() no value
EndConnect(ConnectedShape Shape, ConnectionSite number) no value
EndDisconnect() no value

Type MsoConnectorType
Constants:

msoConnectorTypeMixed = -2
msoConnectorStraight = 1
msoConnectorElbow = 2
msoConnectorCurve = 3

What this says is type type ‘ConnectorFormat’ has 10 properties and 4 methods. The property ‘Appli-
cation’ can be read, and is of type ‘Application’, which is defined elsewhere in the output of getoleclass.
‘Creator’ can be read, and is a number. ‘Type’ can be both read and written, and is of type ‘MsoCon-
nectorType’, which is an enumeration with four valid values. You would use w32GetProperty to re-
trieve ‘Creator’, ‘BeginConnected’, ‘BeginConnectionSite’, ‘EndConnected’, ‘EndConnectionSite’, and
‘Type’, since these all return scalar values. You would use w32GetSubObj to retrieve the other properties,
since they have object type (you’ll have to trust me that ‘Application’ and ‘Shape’ refer to objects, while
‘MsoTriState’, like ‘MsoConnectorType’, is a scalar).

‘BeginConnect’ and ‘EndConnect’ both take an object of type ‘Shape’ and a number. We need to look
at the documentation that comes with the application to find out what to do with them, though. Because
these methods are procedures, they should be called using w32Callproc. If they returned a scalar value,
they would be called using w32CallFunc, and if they returned an object value, they would be called using
w32GetSubObj.

22

7 Service Control Manager

The service control manager is used to drive back-ground applications, such as databases and networking
software. The service control manager interface can be used to add and remove service control manager
entries, and to start and stop services. This can be useful for writing installation scripts, which is why the
functions are here.

There is currently no support for implementing services in Rexx, although it seems like a good idea.

7.1 List of Service Control Functions

w32svcstart (name)→ 0 or error code: starts the named service;

w32svcstop (name)→ 0 or error code: stops the named service;

w32svcremove (name)→ 0 or error code: removes the named service from the list of services;

w32svcinstall (servicename, displayname, programpath[, autostart, user, password])→ 0 or error code: installs a
service.

7.2 w32svcstart

w32svcstart(name) -> 0 or error code

Starts the named service. Name can be either the registry key name (the first argument to w32svc-
install) or the display name (which is what shows up in the services applet). Returns 0 for success, 1 if
the service was already running, -1 if the process could not attach to the service control manager, -2 if the
service could not be opened with sufficent rights to query the status and start it, -3 if the service’s status
could not be queried, and -4 if the service did not start.

7.3 w32svcstop

w32svcstop(name) -> 0 or error code

Stops the named service. Name can be either the registry key name (the first argument to w32svc-
install) or the display name (which is what shows up in the services applet). Returns 0 for success, 1 if
the service was not already running, -1 if the process could not attach to the service control manager, -2
if the service could not be opened with sufficent rights to query the status and stop it, -3 if the service’s
status could not be queried, and -4 if the service did not stop.

7.4 w32svcremove

w32svcremove(name) -> 0 or error code

Uninstalls the named service. Name can be either the registry key name (the first argument to
w32svcinstall) or the display name (which is what shows up in the services applet). Returns 0 for success,
-1 if the process could not attach to the service control manager, -2 if the service could not be opened
with all possible rights, -3 if the service’s status could not be queried, -4 if the service was running and
did not stop, and -5 if the service could not be deleted.

23

7.5 w32svcinstall

w32svcinstall(servicename, displayname, programpath[, autostart,
user, password]) -> 0 or error code

Installs the named service. servicename is the registry key for the service. displayname is the name
that will display in the service control manager. programpath is the full path to the application, which
must be written to support the service control manager. autostart is 1 if the service should start automati-
cally at boot time, or 0 otherwise (default is not to start automatically). User is the userid that should be
used to run the service, and password is the user’s password (default is to use the local system account).

Returns 0 for success, -1 if the process could not attach to the service control manager or -2 if the
service could not be created.

8 Shell

The shell is the user interface, and it controls the start menu, desktop, and probably other things I don’t
know about. Currently, the shell interface can be used to create and modify shortcuts. Since I mostly
want to do this when setting up the start menu, I call the functions w32menux.

8.1 List of Shell Functions

w32menuadditem ([menu], [submenu], display, path, [workingdir], [arguments], [icon number], [icon file], [hot key])
→ 0 or error code: creates or replaces a shortcut;

w32menuedititem ([menu], [submenu], display, [path], [workingdir], [arguments], [icon number], [icon file], [hot
key]) → 0 or error code: modifies a shortcut;

w32menuremoveitem ([menu], [submenu], display)→ 0 or error code: removes a shortcut;

w32menumoveitem ([menu], [submenu], oldname, newname)→ 0 or error code: renames or moves a shortcut;

w32menumove ([menu], submenu, [newmenu], [newsubmenu])→ 0 or error code: renames or moves a folder.

8.2 w32menuadditem

w32menuadditem([menu], [submenu], display, path, [workingdir],
[arguments], [icon number], [icon file],

[hot key]) -> 0 or error code

Adds an item to the start-up menu, creating any sub-menus that are needed along the way.
If menuis given, it can be

’all’ put the item on the start menu for all users (the default)

’current’ put the item on the start menu for the current user

’all desktop’ put the item on the desktop for all users

’desktop’ put the item on the desktop for the current user anything else treat as a directory name, which must
exist.

If sub-menuis given, it must be a valid directory name. If the directory doesn’t exist, it will be created.
This name will show up on the menu as a sub-menu (or on the desktop or other directory as a folder).
To create many nested sub-menus, enter the submenu as’menu1\menu2’ . All intervening directories
will be created.

24

If sub-menuis not given, the item will be put on the menu indicated bymenu.
displayis the name of the item that will appear on the sub-menu.
path is the full path to the program being put on the menu.
workingdir is the directory in which to start the program.
argsare the program’s arguments.
iconnumberis the number of the icon within the icon resource file which should be displayed on the

menu item, starting at 0. The default is 0.
iconfile is the icon resource file which should be used. The default is the file given inpath.
hotkeyis a key-sequence which should bring up the program. The format is something like’Alt-J’ .

This isn’t implemented yet.
If you call this function on an existing item, the item will be altered.

8.3 w32menuedititem

w32menuedititem([menu], [submenu], display, [path], [workingdir],
[arguments], [icon number], [icon file],

[hot key]) -> 0 or error code

Changes the characteristics of a start-up menu item. The item is identified by its display name, given
in the parameterdisplay, and the menu and sub-menu on which it is found. See w32menuadditem, section
8.2, for a description of the parameters. Any parameter which is not specified is left unchanged by this
function.

If you call this function on an item which does not exist, it will do nothing.

8.4 w32menuremoveitem

w32menuremoveitem [menu], [submenu], display

Removes the item from the submenu. See w32menuadditem for the meanings of the arguments.

8.5 w32menumoveitem

w32menumoveitem [menu], [submenu], oldname, newname

Renames a menu item. See w32menuadditem for the meanings of the arguments.

8.6 w32menumove

w32menumove [menu], submenu, [newmenu], [newsubmenu]

Renames or moves a menu. Ifmenuis given, it is the old menu on which the item sits.submenuis the
menu item. Ifnewmenuis given, it is the newmenuon which the item should sit (otherwise, the original
menu is used).newsubmenuis the new submenu name. If it’s not given, the menu item is moved but not
renamed.

9 Program Execution

Programs can generally be executed by passing them to a rexx environment. The functions in this section
use the function ShellExecuteEx() to start programs. This can change the way programs are executed in
subtle ways, for instance by taking an alternative PATH from the registry.

The other functions in this section can be used to register a function which was not written specifically
to support rexx with the rexx intepreter.

These functions were introduced in version 1.4.0.

25

9.1 List of Program Execution Functions

w32execute (file)→ 0 or error code: executes a program;

w32executestem (file., result.)→ 0: executes one or more programs and returns their return codes in the result stem;

w32funcadd (function, library, rexxname[, argtypes] [,returntype])→ 0 or 1: registers a function from a DLL;

w32funcdrop ([rexxname])→ 0 or 1: unregisters one or all functions registered using w32funcadd;

w32funcquery (rexxname)→ 0 or 1: determines whether the named function has been registered.

9.2 w32execute

w32execute(file) -> 0 or error code

Executes the programfile, or the program which is registered to processfile, if file is not executable
itself.

9.3 w32executestem

w32executestem(file., result.) -> 0

Executes the programs listed in the stem variablefile., and writes their return codes to the stem
variableresult.. file. must follow the numeric index convention, with the count of entriesn assigned to
file.0, and the entries themselves assigned tofile.1, file.2, . . . ,file.n.

9.4 w32funcadd

w32funcadd(function, library, rexxname[, argtypes]
[,returntype]) -> 0 or 1

Registers the API functionfunction from the shared librarylibrary as namerexxname. Once the
function has been registered, it can be used as any other function. This is analagous to rxfuncadd, except
that the functions do not need to be designed for use with rexx.

The routine works by putting a standard wrapper function around the API function. It’s likely that
performance will be worse than a dedicated rexx library (for instance, I would expect the Rexx util
SysMoveObject to provide better performance than registering MoveFileExA with this function), but not
every product provides a Rexx API with their interface library.

There are restrictions on the functions which can be called using this mechanism, and the whole
approach is rather fiddly and not very well tested, but the worst thing that can happen is you can crash
your machine and erase all the data, so as long as you keep regular back-ups, what can go wrong?
Seriously, this function requires you to know the calling convention and data types used by the functions
you want to call, and incorrect calls will be likely to crash your application.

Returns 0 on success or 1 on failure.

Data Types Many useful functions take only strings as arguments and return an integer. Such functions
do not require the use of theargtypesandreturntypearguments. Unfortunately, most functions are more
complicated than that, and there’s no standard, widely-supported way for the library to find out what the
arguments are, so they must be specified.

We do this using an argument list which is similar to, but different from the type list used by
w32callfunc (section 6.7).argtypesis a case-insensitive string of letters, most of which map directly
to a corresponding argument (for instance, the first type in the string is usually assigned the value of the
first argument passed to the function at run time). The types are:

26

i 32-bit integer. The corresponding argument is converted to an integer and passed to the API func-
tion;

h 16-bit (half) integer. The corresponding argument is converted to a short and passed to the API
function;

f float. The corresponding argument is converted to a single-precision floating point value and passed
to the API function;

d double. The corresponding argument is converted to a double-precision floating point value and
passed to the API function;

s string. The corresponding argument is null-terminated and passed to the API function. This can
be used for any function argument which takes a pointer for an input-only parameter, whether or
not the pointer is treated as a character string. A null pointer can be passed by leaving out the
argument;

r rexx string. The corresponding argument is passed to the API function exactly as it was passed
from the interpreter (as a pointer to RXSTRING);

b buffer. This should be used when the API function expects a fixed-size, pre-allocated buffer. It
can be followed by a number in brackets (e.g., ‘[1000]’), in which case a buffer of that size will be
allocated and passed to the API function. The default length is 255. The corresponding argument
in the function call must be the name of a rexx variable. The variable will be evaluated before the
function call and its contents placed in the buffer (the buffer will be expanded to the size of the
variable value if required). After the call, the rexx variable will be set to the contents of the buffer
and the buffer will be released;

p pointer. This must be followed by one of i, h, f, d, or s, indicating the type we’re pointing to. The
corresponding argument must be the name of a rexx variable. The variable will be evaluated before
the function call, its value converted to the appropriate type, and a pointer to this value passed to
the API function. Note that ps is handled differently. An argument of type ps is treated as a pure
pointer. The rexx variable must evaluate to a 4-byte pointer value, and any pointer returned by the
API function will be assigned to this variable as a pointer.

The function does not support structures or arrays. If you really need to call a function which takes
a structure argument and you really can’t write your own C wrapper function, then must construct a rexx
variable that looks like the contents of this structure and use the b or s type.

Return Types The API currently supports only three return types: 32-bit integer, null-terminated string,
and pointer. These are specified by passing ‘i’, ‘s’, or ‘p’, respectively, as thereturntypeargument.

Examples The win32 API includes a function called GetUserName, which takes a pointer to a buffer
and a pointer to an integer, and writes the current user name into the buffer and the length of the user name
into the integer. The real name of the function we want to call is GetUserNameA, which is distinguished
from the unicode version, which we don’t want to call because we don’t support unicode yet. The integer
must be initialised to the buffer size, and will be changed to the length of the user name, including a
terminating null. This would be registered like this:

call w32funcadd ’GetUserNameA’, ’advapi32.dll’, ’GetUserName’, ’bpi’

and called like this. Note thatunameis set to the full size of the buffer (255 since I’ve used the default
value), and we must usenamelto restrict it to the correct size.

27

namel = 255
call GetUserName ’uname’, ’namel’
namel = namel - 1
say left(uname, namel) namel length(uname)

There’s another function called MessageBox, which takes a window handle (which can be NULL),
two strings and an integer, displays a message box, and returns an integer indicating which button was
pressed to make the message box go away:

call w32funcadd ’MessageBoxA’, ’user32.dll’, ’MessageBox’, ’sssi’

button = MessageBox(,’Text’, ’Title’, 0)

Finally, MoveFile takes two strings, renames the first to the second, and returns an integer:

call w32funcadd ’MoveFileA’, ’kernel32.dll’, ’MoveFile’

call MoveFile file1, file2

9.5 w32funcdrop

w32funcdrop([rexxname]) -> 0 or 1

Unregisters the function which was registered under namerexxnameusing w32funcadd. If no name
is passed, unregisters all functions. This is analagous to rxfuncdrop, except that this library performs
reference counting, so a function which is added twice and unregistered once will still be registered.

If all functions from a particular library are dropped, the library will be unloaded from memory.
Returns 0 on success or 1 on failure.

9.6 w32funcquery

w32funcquery(rexxname) -> 0 or 1

Returns 1 if the named function isnot registered or 0 if it is.

10 Common Dialogs

The win32 API windows includes functions which present dialogs for performing common tasks, notably
selecting colours, files, and printers. As of version 1.4.1, I provide interfaces to some of these functions.

10.1 List of Common Dialog Functions

w32dlgopenfile (file.[, deffile][, filter.][, directory][, title][, flags])→ 0 or error: presents a ‘file open’ dialog;

w32dlgsavefile (file.[, deffile][, filter.][, directory][, title][, flags])→ 0 or error: presents a ‘file save’ dialog;

w32dlgchoosecolor ([red, green, blue])→ red green blue: presents a colour selection dialog;

w32dlgchoosecolour ([red, green, blue])→ red green blue: presents a colour selection dialog;

28

10.2 w32dlgopenfile

w32dlgopenfile(file.[, deffile][, filter.][, directory]
[, title][, flags]) -> 0 or error

Presents a standard dialog for file selection. The user is able to navigate the system’s directory
structure, and the current directory can be set to the last directory selected.

file. is the name of a stem variable which is used to return the selected file or files, using the numeric
index convention. If the ‘Read only’ box is ticked, the compound variablefile.readonly is set to 1.
Otherwise, it is set to 0.deffileis used as the default value for the ‘File Name’ edit box.

filter. is a stem containing a list of filters to be used for file selection. Thefilter.0 is the count of
filters, as in the numeric index convention. For eachi between 1 andfilter.0, inclusive,filter.display.i is
text which will be displayed in the ‘Files of Type’ list box andfilter.wildcard.i is the wildcard which will
be applied to file selection when the filter is selected.filter.default is the index of the filter which should
be selected by default. Iffilter.default is not supplied, 1 is used. Iffilter is not supplied, orfilter.0 is 0,
the ‘Files of Type’ list box is left empty, and all files are displayed.

directory is the initial directory for file selection. If it is not specified, the current directory is used.
title is the title for the dialog box. If it is not specified, the default title is ‘Open’ (most likely in the

user’s default language).
flags is a set of space-delimited flags which controls the behaviour of the dialog box. Only the

characters shown in bold face need to be specified (and are checked). The full names can be specified for
readability, or made up names with the same prefix can be specified just for the fun of it. Any combination
of flags can be specified, although some of combinations don’t make sense.

AllowMultiSelect Allow more than one file to be selected;

CreatePrompt Prompt for confirmation if the user enters a file which does not exist;

FileMustExist Don’t allow the user to enter a file which does not exist;

HideReadOnly Don’t display the ‘Read Only’ check-box;

NoChangeDir Don’t change the current directory based on the user’s selection;

NoNetworkButton Don’t display the network button;

PathMustExist Display a warning message box if the user types a file path where a directory does not exist;

ReadOnly Check the read-only check-box.

The function returns 0 if one or more files were selected, and sets thefile. stem to contain the file
names. It returns 1 if the user cancelled. If an error occurs, it returns, it returns a different non-zero value,
which you should report as a bug.

10.3 w32dlgsavefile

w32dlgsavefile(file.[, deffile][, filter.][, directory]
[, title][, flags]) -> 0 or error

Presents a standard dialog for file saving. This is identical to W32DlgOpenFile, except the default
title is ‘Save As’, there is a ‘Save’ button, rather than an ‘Open’ button, the ‘Read Only’ parameters do
not apply, and is one additional flag:

OverwritePrompt Present a message box indicating that the selected file already exists.

See section 10.2 for a description of the parameters.

29

10.4 w32dlgchoosecolor

w32dlgchoosecolor([red, green, blue]) -> red green blue

w32DlgChooseColor presents a standard colour selection dialog. The user is able to select a colour
from either a pre-defined list or a kind-of lava lamp thing. The user can define custom custom colours
which are preserved across calls.

If arguments are specified, they must be decimal integers between 0 and 255, giving thered, green,
andbluecomponents of a colour in the additive colour system.

The return code is thered, green, andblue components of the selected colour. If no colour was
selected,red is set to –1. If an error occured,red is set to a negative error code, which should be reported
since it should never happen.

10.5 w32dlgchoosecolour

w32DlgChooseColour is an equivalent function to w32DlgChooseColor for the convenience of people
who spell ‘colour’ correctly.

11 System Parameters

The system parameters functions provide access to a variety of information abut the running system, and
allow some of it to be changed. I’ve generally avoided adding functions which duplicate functionality in
the RexxUtil library, and I’ve tried to stick to functionality which works with all versions from windows
’95 up. These functions were introduced in version 1.3.0.

11.1 List of System Parameter Functions

w32sysgetusername ()→ value: returns the current logged-in user’s name;

w32sysgetcomputername ()→ value: returns the (NetBIOS) name of the machine;

w32syssetcomputername (newname)→ 0 or 1: sets the (NetBIOS) name of the machine;

w32sysgethardwareprofilename ()→ value: returns the name of the active hardware profile;

w32sysshutdown ([how][, force])→ 0 or 1: shuts down the system, or logs off the current user;

w32syssetpowerstate ([how][, force])→ 0 or 1: suspends operation of the machine;

w32sysgetpowerstatus ()→ line battery batterypct batterytime batterylife: returns information about the system’s power
source;

w32sysgetosversion ()→ major ’.’ minor build platform CSDVersion: returns information about the operating system
version;

w32sysgetcolours (stem)→ 0 or 1: returns the shell colours;

w32syssetcolours (stem)→ 0 or 1: sets the shell colours;

w32sysgetparameter (parm)→ value(s): returns the value of various system parameters;

w32syssetparameter (parm, permanent, value[, value2, ...])→ 0 or 1: sets the value of various system parameters;

w32sysshortfilename (filename [, filename2, . . .]) -¿ shortname [shortname2 . . .]: returns the short (8.3 with tildes)
name associated with each real name passed as an argument;

w32syslongfilename (filename [, filename2, . . .]) -¿ longname [longname2 . . .]: the inverse of sysshortfilename.

30

11.2 w32sysgetusername

w32sysgetusername() -> value

Returns the name of the currently logged-in user. This is the short name (pmcphee), rather than the
human name (Patrick McPhee).

11.3 w32sysgetcomputername

w32sysgetcomputername() -> value

Returns the name of the current machine. This is the NetBIOS name, rather than the TCP/IP host
name, but the two are generally the same, although the host name sometimes includes a domain name.

11.4 w32syssetcomputername

w32syssetcomputername(name) -> 0 or 1

Changes the name of the current machine. You must have administrative privilige on the machine
to do this, and you might need to make changes on the domain controller to connect to the network
afterwards. Returns 0 if successful, or 1 otherwise.

11.5 w32sysgethardwareprofilename

w32sysgethardwareprofilename() -> value

Returns the name of the active hardware profile. Hardware profiles are collections of system settings
which can be selected at boot time. They’re used to select different system services, depending on how
the user was feeling at the time the machine was booted. The most common use is to either start or not
start networking software depending on whether the machine is hooked up to a network. This function
could be used to prevent parts of a script from running if the system configuration is not appropriate.

Returns a zero-length string on error.

11.6 w32sysshutdown

w32sysshutdown([how][,force])

Shuts down the system, or ends the current login session.
howindicates how the system should be shut down. Only the first letter is significant. Possible values

are:

reboot Shut down the system and reboot it;

poweroff Shut down the system and switch the power off. If there’s no support for switching the power off,
reboot instead;

logoff Log off the current session;

shutdown Shut down the system and wait for the system to be switched off manually. This is the default.

force indicates how to deal with applications. Only the first letter is significant. Possible values are:

force Don’t give applications a chance to shut down cleanly. Use this as a last resort;

noforce Send applications a message and wait for them to shut down before taking down the system. This
is the default.

31

11.7 w32syssetpowerstate

w32syssetpowerstate([how][,force])

Puts the system into suspended state, or takes it out of suspended state.how is either ‘suspend’ (the
default) or ‘nosuspend’.force is either ‘force’ or ‘noforce’. Only the first character of each option is
significant. Forced operation means that the system does not ask applications whether they’re too busy to
suspend operations just now.

The system must have support for suspended operation installed.

11.8 w32sysgetpowerstatus

w32sysgetpowerstatus() -> line battery pct time life

Returns the state of the system power supply.
line is ‘Offline’, indicating that it is running on battery power, ‘Online’, indicating that it’s plugged

in and running off the mains, or ‘Backup’, which is not documented but I’m guessing means that the
machine is plugged in but running off a UPS.

batterygives an idea of how much charge there is in the battery. It can be ‘High’, ‘Low’, ‘Critical’,
‘Charging’, or ‘NoBattery’.

pctgives an estimate of the battery charge remaining, as a percentage. It is 255 if there is no estimate.
timegives an estimate of the battery charge remaining, in seconds, or –1 if there is no estimate.
life gives an estimate of the life of a fully charged battery, in seconds, or –1 if there is no estimate.
w32sysgetpowerstatus returns a 0-length string when there is an error. It is not supported at all under

Windows NT, and most likely needs some optional part of the system to be installed on the other win32
platforms.

11.9 w32sysgetosversion

w32sysgetosversion() -> major ’.’ minor build platform CSDVersion

Returns detailed information about the OS version. For portability, you should use the RexxUtil
function SysVersion(), however if you need more detailed information, w32SysGetOSVersion() gives
all the information the system will disclose.

major andminor are the major and minor version numbers, respectively.build is the build number.
platform is a numeric identifier indicating the platform. The values are 0, 1, and 2, meaning win32s,
windows 95/98/ME, and windows NT/2000, respectively.

CSDVersiongives additional information about service packs, or who knows what else?

11.10 w32sysgetcolours

w32sysgetcolours(stem) -> 0

Populates the named stem variable with the values of the shell colours currently in effect. The colours
are represented by strings with three space-separated numbers, giving the red, green, and blue indices.
The colour indices range from 0 to 255. w32sysgetcolors is a synonym for this function name.

The colour names match the values in the CURRENTUSER\Control Panel\Colors registry key. They
are:

ACTIVEBORDER the border of the active window;

ACTIVETITLE Tthe title bar of the active window;

APPWORKSPACE the background for multiple-document-interface windows;

32

BACKGROUND the desktop colour;

BUTTONDKSHADOW dark shadow for 3-dimensional elements;

BUTTONFACE the face of buttons;

BUTTONHIGHLIGHT synonym for BUTTONHILIGHT because I can’t bring myself to spell high without the gh;

BUTTONHILIGHT highlight colour for 3-dimensional elements;

BUTTONLIGHT light colour for 3-dimensional elements;

BUTTONSHADOW shadow colour for 3-dimensional elements;

BUTTONTEXT the text on buttons;

GRAYTEXT greyed-out text;

GREYTEXT a synonym for ‘GRAYTEXT’;

HIGHLIGHT a synonym for ‘HILIGHT’;

HIGHLIGHTTEXT a synonym for ‘HILIGHTTEXT’;

HILIGHT back-ground of selected items in a control;

HILIGHTTEXT text of selected items in a control;

INACTIVEBORDER the border of inactive windows;

INACTIVETITLE the title bar of inactive windows;

INACTIVETITLETEXT the title text of inactive windows;

INFOTEXT the text of tool tips;

INFOWINDOW the back-ground of tool tips;

MENU the back-ground of menus;

MENUTEXT the text of menus;

SCROLLBAR the background of scroll bars;

TITLETEXT the title text of the active window;

WINDOW the background of single-document-interface windows;

WINDOWFRAME the window frame;

WINDOWTEXT default colour of text in windows.

Returns 0 on success and failure (windows doesn’t provide a way to distinguish the two).

11.11 w32syssetcolours

w32syssetcolors(stem) -> 0 or 1

For each index ofstemwhich corresponds to one of the colour names given in section 11.10, sets the
corresponding system colour to the given value. If a colour doesn’t appear in the stem, it is left alone.
Colours are represented by strings with three space-separated numbers, giving the red, green, and blue
indices. The colour indices range from 0 to 255. w32syssetcolors is a synonym for this function name.

w32syssetcolors does not change the colours permanently. To do that, you must set the appropriate
values in the CURRENTUSER\Control Panel\Colors registry key.

33

11.12 w32sysgetparameter

w32sysgetparameter(parm) -> value

Retrieves the current value of the named system parameter. The table in section 11.13 gives the
possible parameter names. Most of the system parameters have a single numeric value, but some of them
have several – these are returned as a space-separated list. The table indicates how many parameters to
expect.

Returns a zero-length string on error.

11.13 w32syssetparameter

w32syssetparameter(parm, options, [value[, value2[, ...]]]) -> 0 or 1

Sets the value of the system parameter named byparm. optionsis a set of flags, currently ‘p’, meaning
that the change should be made permanently, and ‘n’, meaning that applications should be notified of the
change. The number of values required depends on the parameter. In general, they should be integers,
but there is one exception.

Some parameters can be set, but not retrieved, and vice-versa. The table indicates the parameter
name, its function, the number of values it takes, and whether it can be get, set, or both. Parameters can
be omitted, in which case they default to 0. The parameters are:

AccessTimeOut (Both, 2) Sets a time-out period after which the access parameters will be disabled. I suppose this
would be useful if you don’t like someone who needs the features, and you want to taunt them.
The second argument is the time-out period in milliseconds. I don’t have documentation, so I’ve
no idea what to set the first value to. It seems like 1 turns the timeout on, while the flag value in
the SDK for 2 is called ‘onofffeedback’;

FilterKeys (Both, 5) Turns on the filterkeys option. The first value is a set of flags. 1 means to turn the feature
on, and other things can be added to that. I will read up on this some time and report back. The
other options are timeouts in milliseconds: time to hold a key before it’s accepted, time to wait
before repeating, time to wait between each repetition, and time to wait between keystrokes before
a duplicate is accepted;

MouseKeys (Both, 6) Turns on the mousekeys option, which allows the pointer to be controlled using the
numeric keypad. The first value is flags. 1 means to turn the feature on, and again there are other
values that could be added in. The next three options are the maximum cursor speed, the time in
which to reach the maximum cursor speed, and another speed which doesn’t seem to correspond
to anything in the control panel. The remaining two parameters are not used currently;

ScreenReader (Both, 1) 1 if there is a screen reader active, or 0 otherwise;

ShowSounds (Both, 1) 1 if the showsounds option is on, 0 otherwise;

StickyKeys (Both, 1) A set of flags indicating the status of the sticky keys feature. 1 means that it’s on, and
there are others that I don’t have documentation for;

ToggleKeys (Both, 1) A set of flags indicating the status of the toggle keys feature. As before, 1 means that it’s
on, and other values are also possible;

Cursors (Set, 0) Causes the system cursors to be reloaded;

DeskPattern (Set, 0) Causes the system to change the desktop pattern by reading the registry;

34

DeskWallPaper (Set, 1) Sets the name of the wallpaper file. The value is a string giving the full path to the file. If
wallpaper is not currently in use, the options must be set to ‘np’ for it to take effect immediately,
otherwise options doesn’t need to be set (unless the change should be permanent, of course). To
revert to the permanently-set wallpaper, omit the value. To remove the wallpaper, set the value to a
zero-length string;

FontSmoothing (Both, 1) 0 if font anti-aliasing is off, or 1 if it’s on. Anti-aliasing sets pixels to grey values to give
the appearance of higher resolution text;

GridGranularity (Both, 1) I have documentation on this, but I still don’t know what it is;

IconHorizontalSpacing (Both, 1) The width in pixels of an icon, for use in arranging icons in the ‘large icon’ view;

Icons (Set, 0) Reloads the system icons;

IconTitleWrap (Both, 1) 1 if icon text can be wrapped, or 0 otherwise;

IconVerticalSpacing (Both, 1) The height in pixels of an icon, for use in arranging icons in the ‘large icon’ view;

Beep (Both, 1) 0 if the warning beep is off, 1 if it’s on;

KeyboardDelay (Both, 1) The amount of time to hold down a key before it starts repeating. The value ranges from
0 (250ms) to 31 (1s);

DoubleClickTime (Set, 1) The amount of time, in milliseconds, which can go by between mouse clicks for them to
be considered part of the same double-click;

DoubleClkHeight (Set, 1) The vertical distance, in pixels, which the pointer can be moved between clicks of a double-
click;

DoubleClkWidth (Set, 1) The horizontal distance, in pixels, which the pointer can be moved between clicks of a
double-click;

KeyboardPref (Both, 1)

KeyboardSpeed (Both, 1) The spead at which characters are repeated when a key is held down. The value ranges
from 0 (2.5/s) to 31 (30/s);

LangToggle (Set, 0) Forces the system to re-read the registry to get the language toggle value. The registry
setting is currentuser\keyboard layout\toggle, and the values are 1 (alt-shift), 2 (ctrl-shift), and 3
(none);

MouseButtonSwap (Set, 1) if the value is 1, sets the mouse buttons to have the opposite meaning from the original.
Otherwise, restores the original meaning;

MouseHoverHeight (Both, 1) The height of a rectangle over which the pointer must be left for the system to consider it
to be hovering;

MouseHoverTime (Both, 1) The amount of time the pointer has to be left over some rectangle on the screen for the
system to consider it to be hovering;

MouseHoverWidth (Both, 1) The width of a rectangle over which the pointer must be left for the system to consider it
to be hovering;

MouseTrails (Both, 1) Indicates the number of cursors to draw to enable the mouse trails feature. The value can
be any whole number;

SnapToDefButton (Both, 1) 1 if the pointer should be set to the default button when a dialog is launched, or 0 other-
wise;

35

WheelScrollLines (Both, 1) The number of lines to scroll when the mouse wheel is rotated;

LowPowerActive (Both, 1) 1 if low power screen saving is in effect, 0 otherwise. This does not work consistently in
all windows versions;

LowPowerTimeout (Both, 1) timeout for low power screen saving (in seconds?). This does not work consistently in all
windows versions;

PowerOffActive (Both, 1) 1 if power-off screen saving is in effect, 0 otherwise. This does not work consistently in
all windows versions;

PowerOffTimeout (Both, 1) timeout for power-off screen saving (in seconds?). This does not work consistently in all
windows versions;

ScreenSaveActive (Both, 1) 1 if screen saving is in effect, 0 otherwise;

ScreenSaverRunning (Both, 1) 1 if the screen saver is actually saving the screen. This does not work consistently in all
windows versions;

ScreenSaveTimeout (Both, 1) timeout for screen saving, in seconds;

Animation (Both, 1) 1 if minimize and restore animiation are on, 0 otherwise;

Border (Both, 1) ‘Border multiplier factor’ which is used to indicate the size of the sizing border;

DragFullWindows (Both, 1) 1 if the entire window should be moved as a window is dragged from one location to
another, or 0 if just the frame should be moved;

DragHeight (Set, 1)

DragWidth (Set, 1)

MinimizedMetrics (Both, 4) how minimized windows should be arranged, the first three values are numbers of pixels
specifying, respectively, the width, horizontal separation, and vertical separation. The fourth value
indicates where the arrangement should start and in which direction it should flow. The values
for starting location are 0, 1, 2, and 3, meaning bottom-left, bottom-right, top-left, and top-right,
respectively, while the values for flow are 0, 4, and 8, meaning horizontal, vertical, or hidden. The
values can be combined, meaning a value of 6 would arrange icons starting in the top-left and
flowing down;

PenWindows (Set, 1) 0 to unload pen windows, or 0 to load it;

WindowsExtension (Get, 1) returns 0 if Windows Plus! is not installed, or 1 if it is. This works only for Windows 95.

Returns 1 on error, or 0 on success.

11.14 w32sysshortfilename

w32sysshortfilename(fname1[, fname2[, ...][) -> shortname1 [shortname2 ...]

For each file name specified as an argument, w32sysshortfilename returns the ‘short’ version of the file
name. This is a requirement for some old applications, some new applications, and parts of the operating
system. It can also be useful with some applications that don’t like spaces in file names (although the
easier solution is to not put spaces in filenames).

parse value w32SysShortFileName(data1, data2, data3) with sdata1 ,
sdata2 sdata3

’oldapp’ sdata1 sdata2 sdata3

36

11.15 w32syslongfilename

w32syslongfilename(fname1[, fname2[, ...][) -> longname1 [longname2 ...]

For each file name specified as an argument, w32syslongfilename returns the ‘long’ version of the
file name. This is useful when some application has returned a ‘short’ file name and you want a more
useful one. Note that if you are the sort of person who puts spaces in file names, you should only pass
one name as an argument (otherwise it could be difficult or impossible to parse out the results, which are
space-delimited).

11.16 w32sysfullfilename

w32sysfullfilename(fname1[, fname2[, ...][) -> fullname1 [fullname2 ...]

For each file name specified as an argument, w32sysfullfilename returns the full path to a file, includ-
ing the drive and directory. This does not change short file names into long names. Note that if you are
the sort of person who puts spaces in file names, you should only pass one name as an argument.

12 Clipboard Functions

The clipboard is a buffer used to share information between applications. It’s typically used to implement
cut and paste operations in interactive applications. The clipboard can be useful for retrieving data from
or sending data to an application which doesn’t support automation, or in cases where human interaction
is required to determine which data should be processed.

Only one piece of information can be stored in the clipboard at one time, but the information can be
stored in many formats. There are several pre-defined clipboard formats, and user applications can regis-
ter their own formats. Rexx applications can store or retrieve data in any format, however the application
is required to understand and process the data itself in most cases. In particular, the length of the data
returned by w32ClipGet is equal to the length of the buffer which was allocated to hold it. This is often
longer than the the actual length of the user data, leaving random garbage at the end of the buffer. The
rexx application should be programmed to detect the end of the data it’s processing.

The clipboard is intended for interactive use, and it’s not a good idea to use it as a general inter-
process-communications mechanism. For one thing, the clipboard could be cleared and filled with new
data between the time one process sets it and another tries to use it. For another, it is extremely annoying
for a process to clear the clipboard without a user requesting it. For instance, a large-scale cut-and-paste
between two applications can be completely ruined by rogue applications mucking up the clipboard
between the two operations, and this can lead to frustration or violence on the part of the user.

The clipboard functions were introduced in version 1.5.0.

12.1 List of Clipboard Functions

w32clipopen ()→ 0 or 1: locks the the clipboard open for use;

w32clipclose ()→ 0 or 1: closes the clipboard;

w32clipgetstem (stemname)→ 0 or 1: retrieves text and writes it to a stem;

w32clipget ([format])→ value: retrieves the data in the specified format;

w32clipsetstem (stemname)→ 0 or 1: writes the contents of the stem as text;

w32clipset (value[, format])→ 0 or 1: writes the specified value in the specified format;

w32clipregisterformat (format)→ value: registers a format name and returns its numeric identifier;

37

w32clipenumformat (stem)→ 0 or 1: lists the numeric identifiers of formats which currently have data;

w32clipformatname (formatid)→ value: returns the name associated with a numeric identifier;

w32cliptestformat (stemname)→ id, 0, or –1: returns first available format from list;

w32clipempty ()→ 0 or 1: empties the clipboard.

12.2 w32clipopen

w32clipopen() -> 0 or 1

Use W32ClipOpen to lock the clipboard for use by more than one other call. For instance, when
setting data, you should open the clipboard, clear the clipboard, set the data in as many formats as you
need, then close it.

It’s not necessary to open the clipboard when making only one clipboard call, since the individual
w32clip calls will open and close the clipboard as necessary. For instance, to retrieve the current text into
a stem, it is sufficient to call w32ClipGetStem without explicitly opening or closing the clipboard.

12.3 w32clipclose

w32clipclose() -> 0 or 1

Closes the clipboard after a call to w32ClipOpen. Calls to w32ClipOpen and w32ClipClose are
reference-counted, meaning that the clipboard will still be open if there are two calls to w32ClipOpen but
only one to w32ClipClose.

One should close the clipboard as soon as possible after opening it, since other applications are not
able to use the clipboard while it is open.

12.4 w32clipgetstem

w32clipgetstem(stemname) -> 0 or 1

Retrieves the current text from the clipboard and writes it into a stem namedstem, using the numeric
index convention with one line per index. Most applications write a text version of their data to the
clipboard, and the operating system can perform automatic conversions from some other formats.

w32ClipGetStem assumes every line is terminated with CR (decimal 13) and LF (decimal 10). Some
applications may terminate lines with either CR or LF by themselves, in which case the routine will not
have the expected results.

There may be problems with character set conversion, especially on machines where the windows
character set and OEM character set (the one used in DOS boxes) are set differently. Do write if you have
trouble, but I strongly recommend setting the OEM character set to be the same as the windows characer
set (search the registry for OEMCP and ACP).

12.5 w32clipget

w32clipget([format]) -> value

Returns the current data in the specified format.format can be either the numeric identifier of the
format, or the format’s name. The names are not case-sensitive. Use w32ClipRegisterFomat to retrieve
the numeric identifier for a user-defined format.

w32ClipGet makes no effort to process the data it retrieves. In particular, the length of the return
string is the size of the memory block used to hold the data, which in general will be larger than the

38

data itself. In some cases, this will not matter, but in others, the application has to process the data to
determine the correct length.

I may elect to fix this situation for some or all of the standard formats in a future release.
There are some standard clipboard formats, and others which are specified by applications. You can

find the names of the formats used by applications of interest to you by calling w32ClipEnumFormat and
w32ClipFormatName. There are several standard formats, which do not have official names, but which
have fixed numeric identifiers. For the purpose of this library, names have been assigned based on the
manifest constants specified in the windows toolkit, and are listed below.

Name Identifier Format
TEXT 1 text, null-terminated
BITMAP 2 a bit-map resource
METAFILEPICT 3 windows meta-file
SYLK 4 symbolic link
DIF 5 Data Interchange Format
TIFF 6 tagged image file format
OEMTEXT 7 text in the OEM (DOS box) code page, null-terminated
DIB 8 Device-independent bitmap (a BMP without the first 14 bytes or so)
PALETTE 9 colour palette
PENDATA 10 input from a pen palette
RIFF 11 riff audio format
WAVE 12 wave audio format
UNICODETEXT 13 text in unicode, double-null-terminated
ENHMETAFILE 14 enhanced windows meta-file
HDROP 15 drag-and-drop handle
LOCALE 16 handle to a locale identifier
OWNERDISPLAY 128 data will be returned via call-back (don’t use this)
DSPTEXT 129 text representation of private data
DSPBITMAP 130 bitmap representation of private data
DSPMETAFILEPICT 131 metafile representation of private data
DSPENHMETAFILE 142 enhanced metafile representation of private data

12.6 w32clipsetstem

w32clipsetstem(stemname) -> 0 or 1

Sets the clipboard text data to the contents of the stemstemname. The stem must use the numeric
index convention. CR and LF are inserted between each stem value. The data is null-terminated.

12.7 w32clipset

w32clipset(value[, format]) -> 0 or 1

Sets the specified clipboard data format to the specified value.format can be a name or numeric
identifier. The name can be one of the standard names listed in section 12.5, or any name which has been
registerd using w32ClipRegisterFormat. The format name may be registered as a side-effect of this call.

valueshould be data in the format expected by other applications which understand formatformat. If
the format is private to your applications, you should have some mechanism for determining the length
of the data, since it’s impossible to do so from the clipboard itself. w32ClipSet writes two nulls after the
end of the data. This ensures that the data is correctly delimited when writing text- or unicode-format
data.

The following example shows how the clipboard is typically set. It uses w32ClipOpen and w32ClipClose
to lock the clipboard open, preventing other applications from slipping in and setting their own data. The

39

clipboard functions perform implicit opens and closes if necessary, so the w32ClipOpen and w32ClipClose
calls can be left out in cases when only one call is being made.

/* lock the clipboard so the other operations happen ‘atomically’ */
if \w32ClipOpen() then do

say ’Failed to open the clipboard’
exit 1
end

/* clear existing data */
call w32ClipEmpty

/* put a description for applications which don’t process images */
call w32ClipSet ’A picture of a bug’, ’text’
/* put put the image data as a device-independent bitmap, which is

* everything after the first 14 (usually) bytes of a bmp file */
call w32ClipSet bugimage, ’dib’

/* close the clipboard to allow other applications to process it */
call w32ClipClose

12.8 w32clipregisterformat

w32clipregisterformat(format) -> value

w32ClipRegisterFormat makes a clipboard format available for use by an application.format is a
name which is understood by one or more applications. For instance, ‘Rich Text Format’ is a name
understood by MS Word, which refers to the word processing format of the same name. The function
returns the numeric identifier by which the format is known to the clipboard. This identifier can be used
only for the current session of windows.

w32ClipSet and w32ClipGet accept either the numeric identifier or the name, and the name will
be registered by those functions if it is not already registered, so w32ClipRegisterFormat doesn’t need
to be called for many purposes. Its return code can be helpful either in interpreting the output of
w32ClipEnumFormat or in slightly speeding up set and get operations.

12.9 w32clipenumformat

w32clipenumformat(stem) -> 0 or 1

Retrieves a list of formats currently available on the clipboard. This allows an application which
understands more than one format to select the format best suited to its purposes.stemis the name of a
stem, which will be set following the numeric index convention.

The example shows how this function can be useful, and calls into question the way the stem is set:

call w32clipopen

text = 1 /* from the table above */
rtf = w32ClipRegisterFormat(’Rich Text Format’)

call w32clipEnumFormat ’fmts.’
hasfmt. = 0
do i = 1 to fmts.0

x = fmts.i

40

hasfmt.x = 1
end

if hasfmt.rtf then
call rtf_processing w32ClipGet(rtf)

else if hasfmt.text then
call text_processing w32ClipGet()

else
call nodata_processing

call w32ClipClose

12.10 w32clipformatname

w32clipformatname(formatid) -> value

Returns then name associated with the numeric identifierformatid. If formatid does not refer to a
registered clipboard format, returns the empty string.

12.11 w32cliptestformat

w32cliptestformat(stemname) -> id

Givenstemname, an ordered list of registered clipboard formats, w32ClipTestFormat returns the nu-
meric identifier of the first format in the list for which data is available on the clipboard.Stemname
follows the numeric index convention.

If the clipboard is empty, w32ClipTestFormat returns 0. If none of the listed formats is available,
w32ClipTestFormat returns –1.

w32ClipEnumFormat returns all the available clipboard formats, while w32ClipTestFormat reports
the first format from the ones that you specify. This might be slightly more efficient if you have a lot of
clipboard formats registered, but this function doesn’t seem to add much, which is probably why it took
me 9 months to notice that I’d left it out of the documentation. The example from section 12.9 could be
written like this:

text = 1 /* from the table above */
rtf = w32ClipRegisterFormat(’Rich Text Format’)

fmt.0 = 2
fmt.1 = ’Rich Text Format’ /* preferred format */
fmt.2 = ’Text’ /* this will do */

gf = w32ClipTestFormat(’fmt.’)

if gf = 0 then say ’clipboard is empty’
else if gf = -1 then say ’no text data’
else if gf = text then call text_processing w32ClipGet()
else call rtf_processing w32ClipGet(rtf)

12.12 w32clipempty

w32clipempty() -> 0 or 1

W32ClipEmpty removes all data from the clipboard. One normally does this before writing any data,
to ensure that all data formats in the clipboard refer to the same data. See w32ClipSet, section 12.7 for
an example.

41

13 Example Programs

The example programs are intended to demonstrate the use of the different API functions. Some of them
started life as test programs for new functions, but some are solutions to real problems. This section
describes the intent and design of some of the examples.

13.1 regregina.rex

regregina sets up an association between the file extension .rex and the regina executable. After running
it, files with extension .rex can be used from the command prompt as if they were ordinary executables
(assuming the path to the regina executable isd:\ptjm\bin\regina.exe , which is not true on a
surprising number of machines).

It was written to demonstrate the registry functions. The approach is to create a registry key called
HKEY_CLASSES_ROOT\.rex\Shell\Open\Command and make its default value be a template
which can be used to execute rexx scripts. See the documentation for NT’s ftype command for a descrip-
tion, albeit an incomplete one, of the format for this template. In this case, the template is ‘regina.exe %1
%*’, which passes the name of the script and all of its parameters to regina.exe.

regregina starts by setting variables to hold the name of the rexx interpreter and the extension of
rexx command files. It then checks to see if the necessary registry key exists by trying to open it.
There’s a weak attempt to allow the user to overwrite an existing association, followed by a series of
w32RegCreateKey calls which create the necessary registry entries. The heart of the routine is

if w32RegSetValue(crsockey, ’’, "REG_SZ", regexe ’%1 %*’) then do

which sets the default value of the ‘Command’ key to the execution template.
Once the association is set up, the script adds ‘.rex’ to the PATHEXT environment variable. Curiously,

it retrieves the existing PATHEXT from the system environment key, modifies it, then gives the user the
option of writing the result to either the system or user environment. It really ought to check for an
existing PATHEXT in the user environment before overwriting it.

13.2 eventlog.rex

eventlog was written to demonstrate the event log reading functions. Usage is

eventlog [machine][/logname]

wherelognameis one of ‘Application’, ‘Security’, or ‘System’, andmachineis the name of the machine
for which the log should be retrieved.

The most important thing to know when traversing the event log is that it doesn’t necessarily start
at event 1. It’s important to call w32getoldesteventlogrecord (see section 5.5) to get the range of event
numbers.

13.3 evterr.rex

evterr was written because I sometimes get a message on my screen saying ‘not all services started –
check the event log’. evterr searches all the event logs on the local machine looking for error messages
which were generated today, and prints them on the screen.

It loops backwards, so it prints the events in reverse order. I had originally intended to stop at the time
of the last boot, rather than using the date as a boundary, but I got lazy, and it works for me.

42

13.4 findservice.rex

findservice lists services which run under a given user id. The usage is

findservice domain\user

This is useful in environments which force password changes. Apart from the fact that services can
fail to run after a password change, if you generate enough failed logins from services, your account can
be locked, which is quite irritating.

All the program does is traverse the ‘Services’ registry key, searching for services whose ‘Object-
Name’ value is set to the specified user name, and prints the service’s ‘DisplayName’. It demonstrates
the registry query functions, w32RegOpenKey, w32RegEnumKey, w32RegQueryValue, and w32Reg-
CloseKey.

I use the services applet to change the password for all the listed services.

13.5 word.rex

word.rex is a simple example of automation support which was part of the original Ataman port of Regina.
It uses the MS Word Basic interface, which doesn’t seem to be documented anywhere, to create a new
file, insert some text, and save it. See pdfword.rex in section 13.10 for a more complete example of
interaction with MS Word.

13.6 menu.rex

menu.rex was written to demonstrate the function w32menuadditem. It creates a folder on the user’s
programs menu, and inserts links to the README, FIXES, and manual for the w32funcs distribution.
the README and FIXES files are opened using notepad, and each take icons from notepad. The manual
will be opened using file association.

13.7 vss.rex

vss converts a visual source safe project into a series of RCS files, preserving comments, labels, user
names and check-in dates. This started life as a program to retrieve a source safe project based on a label,
but I decided I would feel much happier if all of my source safe projects were backed up in a reliable
version control system. It was written using a white paper on source safe automation which I retrieved
from a Microsoft web site.

The script uses both w32funcs and rexxutil. I have another version which uses ‘rexxfile’, a library
which allows a script to write to the standard input of another program, instead of putting comments in a
temporary file. Note that having a working Source Safe installation doesn’t guarantee that this script will
work. The automation interface must be installed and configured. You must also have RCS executables.
RCS seems to be less popular than, for instance, CVS, but I like it because it’s simple, reliable, and
portable. There’s at least one win32 port available, and the RCS parts of the script could be replaced by
calls to another version control system.

The script takes a single argument, which is the source safe project name, in the form $/path/to/
project. The RCS tree is written to a directory tree under the current directory. The top-level directory of
this tree is taken from the lowest-level directory of the VSS project.

The first part of the script is hopefully self-explanatory – it loads the source safe interface by calling
w32CreateObject, opens the default source safe database by calling the ‘Open’ method, then prints a few
propreties to give the user something to read while it’s processing.

After opening the project using w32GetSubObj, the procedure setupIdentifiers calls w32OleGetObjId
for all the method and property names which will be used in the inner loop. Automation uses numeric
identifiers to distinguish between different methods and properties. When an automation function, for
instance, is called using its name, the library has to first look up the numeric identifier and then call the

43

function. Using identifiers instead measurably improves the performance of programs which use a lot of
automation function calls. One problem with performing look-ups this way is that you need an instance
of every object which will be used, and it might be inconvenient or expensive to come up with that list at
the start of a run.

The function doProject enumerates all the items in a project and either calls itself recursively, or calls
doFile to extract the revisions of a file. The enumeration uses acollectioncalled ‘Items’. A collection
is a sort of array, which typically has a property called ‘Count’ which gives the number of things in the
collection, and a property called ‘Item’, which takes an integer as an argument and returns one of the
things. There is always a method of enumerating all the things in the collection, which is accessible
through w32OleNext. In this case, we loop through all the items in numeric order, and check the ‘type’
property to see if it’s a project or a file. If it’s a project, doProject calls itself, making this a depth-first
operation.

When the item is a file, doFiles is called. It finds the name of the file, initialises the RCS file, turning
off file locking for performance reasons, then enumerates all the versions of the file, which happen to
be in a collection called ‘Versions’. Versions is an odd collection, in that it doesn’t provide a ‘Count’ or
‘Item’ property. The only way to list the versions is using w32OleNext. This is especially unfortunate,
since the order of evaluation is the reverse of the one we need, so all the version handles are put in a stem
variable, which is traversed backwards.

For each file revision, the text of the revision is written to a file, the date is normalised, and the file
is checked in. The most complicated part of that is date normalisation. The date returned by source safe
is in the format given by the short-format for date and time in the system’s internationalisation settings.
The script assumes this is the ‘US’ format, month/day/year h:mi:s am/pm, and it needs to be changed to
use some other format. This date and time is converted into the rexx ‘b’ and ‘s’ formats, respectively,
the time is changed to greenwich mean time, and the date and time are changed to the canonical y/m/d
hh24/mi/ss format. Finally, if the time happens to be earlier than another revision, it is adjusted to be
later, and the original time is added to the revision comment (RCS will reject the change, otherwise).

13.8 randcolour.rex

randcolour randomly changes the colour of every UI element every 10 seconds. It demonstrates one
possible use of w32SysSetColours. Some people find it a bit irritating when you do this.

13.9 getcolours.rex

getcolours retrieves the current system colour setting, and restores the system colours to the defaults. It
is most useful when randcolour has produced an interesting set of colours and you want to know what
they are, but it has secondary application when randcolour has produced completely unuseable colours
and you want to restore things to the way they were. It demonstrates the use of w32SysGetColours,
w32SysSetColours, w32RegOpenKey, w32RegEnumValue, and w32RegQueryValue.

13.10 pdfword.rex

pdfword adds bookmarks and document information to a Microsoft Word document, in preparation for
distilling into Adobe’s Portable Document Format (PDF), using Ghostscript. It will probably also work
with Adobe’s pdfwriter, although I haven’t bothered to check.

Postscript files can communicate information to PDF conversion utilities using an operator called
pdfmark. pdfword uses Word’s ‘print’ fields to add pdfmarks which set bookmarks for each heading and
which set the title, author, and other information about the document.

The general format for our bookmark pdfmark is

[/Action /Goto /View [/XYZ xpos ypos zoom] /Title (title)
/Count count /OUT pdfmark

44

This creates a bookmark whose title istitle, and which sets the upper left corner of the viewer window to
(xpos, ypos) of the page containing the pdfmark when it’s selected. Ifcountis non-zero, the nextcount
bookmarks will be displayed as children of this bookmark. Thecountdoes not include grand-children.
zoomaffects the zoom level after the bookmark has been selected. I set it to null to leave it the same as it
was before the bookmark was selected.

What we want to do is add one of those pdfmarks to each heading in the document, so we need to
be able to find out, for each paragraph, whether it’s a heading, its title, its position on the page, and the
number of sub-headings. Each paragraph has a property called ‘OutlineLevel’, which tells what kind of
heading it is. This turns out to be a number from 1 (heading level 1) to 10 (body text). That’s an awful lot
of outline levels, so we arbitrarily cut it off at 3 – we’ll add a pdfmark to each paragraph with outline level
1, 2, or 3. The most obvious way to find the number of children is to count them. The other information
can be retrieved from a paragraph property called its range.

To count child headings, we enumerate all the paragraphs, starting at the end of the document. When
we encounter a level 3 paragraph, we emit a pdfmark with 0 as the child count, and increment the count
of level 3 paragraphs. When we encounter a level 2 paragraph, we emit a pdfmark with the count of level
3 paragraphs, then set that count to 0 and increment the count of level 2 paragraphs. When we encounter
a level 1 paragraph, we emit a pdfmark with the sum of the two counts, then set both counts to 0.

The first thing we do in the script is make a connection to Word by calling w32CreateObject, then
find the active document by calling w32GetSubObj. The last thing we do before getting on with the task
at hand is to find out the size of a page in this document. We need to know this because Word measures
pages from the top, but PostScript measures them from the bottom, so we need to perform a conversion.

Word’s document class has a property called ‘PageSetup’, and it has properties called ‘BottomMar-
gin’, ‘TopMargin’, and ‘PageHeight’. Adding them together gives the offset from which Word gives
positions information. PageSetup has another property called ‘LeftMargin’ which we use to determine
the left position for all our /Goto operations. We subtract 4 from the margin to give a 4 point margin after
the goto.

The first thing we need to do is get rid of any print fields that might be left over from a previous run
of this utility. We do this by enumerating the members of the documents ‘Fields’ collection, looking for
fields which have type wdFieldPrint. wdFieldPrint is a member of an enumeration type called wdField-
Type. Its value can be found using gettypeinfo (that’s also how I found out about the outline level values).
For each print field, we simply call the delete method.

The next little bit of the script is taken up retrieving object ids to speed up all the w32GetSubObj and
w32GetProperty calls. For each paragraph, we test its outline level, and if it’s a heading, we update the
counts as outlined above. Then we retrieve the ‘Range’ property, and from that we retrieve the ‘Text’
property, having first stripped its very annoying trailing carriage return. We print the text to the screen to
give impatient programmers a feel for where we are.

When we retrieve the range, its start position is at the start of the paragraph, and its end position is at
the end. We now set the end position to be at the same spot as the start, and retrieve the vertical position
of the range (the value of wdVerticalPositionRelativeToPage was found the same way as wdFieldPrint).
The page position needed for the postscript file is obtained by deleting this result from the height of the
page. Finally, all that information is put together into the pdfmark, and we create a print field by adding
it to the fields collection, and specifying the range (which now is at the start of the paragraph) as the
location for the field.

Once all the paragraphs have been set, we want to put some document information into the postscript
file, so that it will be available in the PDF. In particular, we want to set the title, subject, author, key-
words, creation time, and modification time, and we want to have the document open with the bookmarks
displayed.

All that information is retrieved from a document property called BuiltinDocumentProperties, which
is a collection indexed by an enumeration called wdBuiltInProperty. Again, I got the values for these
indices using gettypeinfo. Once the properties are retrieved, they’re written out using another pdfmark,
which has the form

45

[/Author (name) /Title (title) /etc (etc) /DOCINFO pdfmark

Each of the document info tags is written only if corresponding properties are set in Word. Finally, we
insert the print field containing this pdfmark at the start of the document by getting the range which
covers the entire document, setting its end to the start, and adding the field in the spot indicated by the
range.

After pdfword has been run, two steps need to be performed manually: the document must be printed
to a postscript file, for instance, by selecting print to file with a postscript printer driver, or by defining a
new printer whose output port is a local file, and associating it with a postscript printer driver, and then
the file needs to be converted to PDF, for instance using Ghostscript’s ps2pdf. One common suggestion
for generating postscript output from Windows applications is to use the Adobe postscript driver, which
can be downloaded from their web site.

I used three resources when working this out. I got the pdfmark reference from Adobe’s web site, the
Word Visual Basic documentation from the Word installation CD, and a list of all the Word classes from
the Word typelib, via gettypeinfo.

13.11 enumword.rex

enumword prints the text of every paragraph in a Microsoft Word document. It was written as a test
program while I was trying to figure out why w32OleNext didn’t work with Word, but it could be the
basis of any number of useful programs, since walking through the contents of a Word document is the
sort of thing people do all the time.

All the script does is connect to Word, find the active document, and loop through the ‘Paragraphs’
collection, and print the text of each one.

13.12 clipex.rex

clipexDemonstrates various things you might want to do with the clipboard functions.

13.13 wrevlog.rex

wrevlog demonstrates writing to the event log. wrevlog.mc contains the text of a series of messages
which can be compiled into a message file using the method described in section 5.19. wrevlog.dll is a
pre-made version of this message file.

Run without arguments, wrevlog registers the message file as belonging to the ‘RexxW32Example’
application and writes a series of messages to the event log. The registration step requires administrative
access to the local machine. Run with the argument ‘remove’, wrevlog unregisters the message dll, which
also requires administrative access.

wrevlog.mc shows messages of different severities and demonstrates the use of different categories.
It’s possible to have a catch-all message and pass the details as parameters, but it’s better in my opinion
to make the messages as specific as possible, to allow automated tools to process message information
without examining the message text or parameters.

46

Index
addfuncs, 5
Ataman Software, 1

backupeventlog, 11

callfunc, 18
callproc, 19
cleareventlog, 11
clip

close, 38
empty, 41
enumformat, 39, 40
formatname, 39, 41
get, 37, 38
getstem, 38
open, 38
registerformat, 38–40
set, 39
setstem, 39
testformat, 41

clipboard
example, 39, 46
formats, 39
locking, 38
reading, 38
writing to, 39

clipex.rex, 46
closeeventlog, 11
compatibility, 1, 3, 8, 17–19, 25, 28, 30, 32
createobject, 16, 43, 45

debug, 4
desktop, 24
dlg

choosecolor, 30
choosecolour, 30
openfile, 29
savefile, 29

dropfuncs, 3, 5

enumword.rex, 46
event log

example, 42
message files, 14
writing, 46

eventlog.rex, 42
evterr, 42
execute, 26

stem, 26

expandenvironmentstrings, 1, 10

findeventlogentry, 12
findservice, 43
func

add, 26
drop, 28
query, 28

getcolours.rex, 44
geterror, 3
getevent

category, 12
data, 13
id, 12
numstrings, 13
string, 13
timegenerated, 13
timewritten, 13
type, 12

GetLastError, 3
getnumberofeventlogrecords, 11
getobject, 17
getoldesteventlogrecord, 11, 42
getoleclass, 21
getproperty, 19, 22
getsubobj, 19, 21, 43, 45

insouciance, 8, 16

language
native, 3

loadfuncs, 2, 3

menu
additem, 24, 43
edititem, 25
move, 25
moveitem, 25
removeitem, 25

menu.rex, 43

NT resource kit, 1
numeric index convention, 2

OLE
CLSID, 16
Program ID, 16
releasing objects, 17, 20
typelist definitions, 18

47

ole
cleanup, 17
geterror, 20
getobjid, 43
next, 20, 21, 44, 46
type library, 21

olegetarray, 20
olegeterror, 4
olegetid, 17
oleputarray, 20
openbackupeventlog, 11
openeventlog, 11

pdfword.rex, 44
ptjmc, 14, 46
putproperty, 19

randcolour.rex, 44
reg

closekey, 5, 6, 43
connectregistry, 6, 9
createkey, 5, 6
deletekey, 8
deletevalue, 8
enumkey, 8, 43
enumvalue, 8, 44
flushkey, 8
getkeysecdesc, 8
loadkey, 9
openkey, 5, 6, 43, 44
queryinfokey, 9
queryvalue, 6, 7, 43, 44
queryvaluetype, 7
restorekey, 9
savekey, 9
setkeysecdesc, 9
setvalue, 5, 7
unloadkey, 9

registry
data formats, 7
data types, 7
standard keys, 4
value types, 7

regregina.rex, 42
releaseobject, 17
RexxUtil, 30, 32
RxFuncAdd, 2, 3

short-cuts
creating, 24
deleting, 25
moving, 25

source safe, 43
svc

install, 24
remove, 23
start, 23
stop, 23

sys
fullfilename, 37
getcolors, 32
getcolours, 32, 44
getcomputername, 31
gethardwareprofilename, 31
getosversion, 32
getparameter, 34
getpowerstatus, 32
getusername, 31
longfilename, 37
setcolors, 33
setcolours, 33, 44
setcomputername, 31
setparameter, 34
setpowerstate, 32
shortfilename, 36
shutdown, 31

system parameters
getting, 32, 34
setting, 33, 34

typelist
w32FuncAdd, 26

version, 3
vss.rex, 43

word.rex, 43
wrevlog.mc, 46
wrevlog.rex, 46
writeeventlog, 13

48

	Introduction
	Reporting Bugs
	Using RxFuncAdd
	Licencing
	Numeric Index Convention

	Housekeeping Functions
	W32Load/DropFuncs
	W32Version

	Error Messages
	w32geterror
	w32olegeterror
	w32debug

	Registry Functions
	List of Registry Functions
	Example
	w32regopenkey
	w32regcreatekey
	w32regconnectregistry
	w32regclosekey
	w32regqueryvalue
	w32regqueryvaluetype
	w32regsetvalue
	w32regdeletekey
	w32regdeletevalue
	w32regenumkey
	w32regenumvalue
	w32regflushkey
	w32reggetkeysecdesc
	w32regsetkeysecdesc
	w32regqueryinfokey
	w32regsavekey
	w32regrestorekey
	w32regloadkey
	w32regunloadkey
	w32expandenvironmentstrings

	Event Log Functions
	List of Event Log Functions
	w32openeventlog
	w32closeeventlog
	w32getnumberofeventlogrecords
	w32getoldesteventlogrecord
	w32openbackupeventlog
	w32backupeventlog
	w32cleareventlog
	w32findeventlogentry
	w32geteventid
	w32geteventtype
	w32geteventcategory
	w32geteventnumstrings
	w32geteventtimewritten
	w32geteventtimegenerated
	w32geteventstring
	w32geteventdata
	w32writeeventlog
	Creating message files
	Message Definitions
	Output Files

	OLE Automation
	List of Automation Functions
	w32createobject
	w32releaseobject
	w32olecleanup
	w32getobject
	w32olegetid
	w32callfunc
	w32callproc
	w32getproperty
	w32getsubobj
	w32putproperty
	w32olegetarray
	w32oleputarray
	w32olenext
	w32olegeterror
	getoleclass Type Library `Browser'

	Service Control Manager
	List of Service Control Functions
	w32svcstart
	w32svcstop
	w32svcremove
	w32svcinstall

	Shell
	List of Shell Functions
	w32menuadditem
	w32menuedititem
	w32menuremoveitem
	w32menumoveitem
	w32menumove

	Program Execution
	List of Program Execution Functions
	w32execute
	w32executestem
	w32funcadd
	w32funcdrop
	w32funcquery

	Common Dialogs
	List of Common Dialog Functions
	w32dlgopenfile
	w32dlgsavefile
	w32dlgchoosecolor
	w32dlgchoosecolour

	System Parameters
	List of System Parameter Functions
	w32sysgetusername
	w32sysgetcomputername
	w32syssetcomputername
	w32sysgethardwareprofilename
	w32sysshutdown
	w32syssetpowerstate
	w32sysgetpowerstatus
	w32sysgetosversion
	w32sysgetcolours
	w32syssetcolours
	w32sysgetparameter
	w32syssetparameter
	w32sysshortfilename
	w32syslongfilename
	w32sysfullfilename

	Clipboard Functions
	List of Clipboard Functions
	w32clipopen
	w32clipclose
	w32clipgetstem
	w32clipget
	w32clipsetstem
	w32clipset
	w32clipregisterformat
	w32clipenumformat
	w32clipformatname
	w32cliptestformat
	w32clipempty

	Example Programs
	regregina.rex
	eventlog.rex
	evterr.rex
	findservice.rex
	word.rex
	menu.rex
	vss.rex
	randcolour.rex
	getcolours.rex
	pdfword.rex
	enumword.rex
	clipex.rex
	wrevlog.rex

	Index

