
Associative Arrays for Rexx

Patrick TJ McPhee (ptjm@interlog.com)

Version 1.0.0, 26 May 2003

Contents

1 Introduction 1
1.1 Installation . 1
1.2 Reporting Bugs . 2
1.3 Using RxFuncAdd . 2
1.4 Licencing . 3

2 Rexx Functions 3
2.1 ArrLoadFuncs . 3
2.2 ArrDropFuncs . 4
2.3 ArrVersion . 4
2.4 ArrNew . 4
2.5 ArrSet . 4
2.6 ArrDefault . 4
2.7 ArrGet . 5
2.8 ArrIn . 5
2.9 ArrDoOver . 5
2.10 ArrCopy . 6
2.11 ArrDrop . 6
2.12 ArrToStem . 6
2.13 ArrFromStem . 6
2.14 Passing arrays to subroutines . 7
2.15 Arrays returned by other packages 7

3 C Functions 7
3.1 rxhash_new . 8
3.2 RXHASH_TO_RXSTRING . 8
3.3 RXSTRING_TO_RXHASH . 8
3.4 rxhash_set . 8
3.5 rxhash_get . 8
3.6 rxhash_drop . 9
3.7 rxhash_delete . 9
3.8 rxhash_iterate . 9
3.9 rxhash_setprop . 9
3.10 rxhash_getprop . 10

i

1 Introduction

Associative arrays are indexed data structures which use arbitrary data as keys. Where a
‘normal’ array idenifies a value by its location in the array structure, associative arrays
associate values with their keys, which are often useful application-specific data in
themselves. This concept is widely used in scripting applications; for instance, Rexx’s
stem variables are a form of associative array.

While they are a form of associative array, stem variables in ANSI Rexx don’t
provide two useful features: an operation to enumerate the keys in use in the array,
and operations which act on the array as a whole, especially copying and passing to a
function. The RxHash package is a set of routines for manipulating associative arrays
which can be copied and passed as function arguments. It includes functions to convert
between RxHash arrays and stem variables, and C language functions which can be
used by other Rexx loadable libraries to generate and modify RxHash arrays.

This manual describes both the C and Rexx routines. People who don’t wish to
program in C can ignore the C routines section.

1.1 Installation

RxHash includes two pre-compiled binaries for Win32 platforms, one pre-compiled
binary for OS/2, and source code which should compile on any system which includes
an ANSI C compiler. There is no installation program.

On Win32 platforms with Regina, copy win32/rxhash.dll to a directory on your
path, or to the directory containing regina.exe or your rexx-enabled application. If
you use a Rexx interpreter other than Regina, you either need to recompile the library
using your interpreter’s development kit or download and install rexx/trans and use
rexxtrans/rxhash.dll instead.

On OS/2, copy os2/rexxre.dll to a directory in your LIBPATH.
On Unix, you need to compile the library. The distribution does not include a

configuration script, but it includes make files which have been known to work using
the stock vendor compiler on several Unix systems. If you have one of those systems,
link the appropriate make file to the name ‘Makefile’ and build the ‘dist’ target. For
instance, on Solaris:

ln Makefile.sun Makefile
make dist

On most platforms, this builds a shared library called librxhash.so. On HP-UX, the
file is called librxhash.sl, and on AIX, it’s called librxhash.a. The path to this library
can be set in three ways:

Most Unix systems allow a shared library search path to be embedded into program
files. If you build regina (or your rexx-enabled application) such that this path is set
to include a directory such as /opt/regina/lib or /usr/local/lib, you can install RxHash
by copying the shared library to this directory. Otherwise, you need to either set an
environment variable or change the way the system searches for shared libraries.

Unix systems typically use a different path for shared libraries than they do for
program files. The name of the environment variable used for the shared library path

1

is not standardised, however most systems use LD_LIBRARY_PATH. Notable excep-
tions are AIX (LIBPATH) and HP-UX (SHLIB_PATH for 32-bit executables, LD_
LIBRARY_PATH for 64-bit executables). To install RxHash, add an appropriate di-
rectory to the shared library path for your machine and copy the shared library to that
directory.

Finally, some systems provide a utility (often called ldconfig) which can be used
either to set the standard search path for shared libraries, or to provide a database of
shared libraries. On such a system, RxHash can be installed by copying the shared
library to an appropriate directory and using this utility to add it to the search database.
You’ll need to consult your system documentation for more information.

1.2 Reporting Bugs

I don’t anticipate making a lot of changes to this library in the future, but I would like
it to be bug-free.

If you find a bug, an error in the documentation, or you simply have a suggestion for
improving the distribution, please send me details at ptjm@interlog.com. It’s useful to
know the operating system you’re using, the Rexx interpreter and its version, and the
version of rxhash, and to have a set of steps for reproducing the bug. The example
below shows how to retrieve the interpreter and library version information:

/* report useful version information */
parse version ver
say ’interpreter:’ ver

call rxfuncadd ’arrversion’, ’rxhash’, ’arrversion’
say ’rxhash:’ arrversion()

1.3 Using RxFuncAdd

All the routines in rxhash can be loaded either directly using RxFuncAdd, or indirectly
using ArrLoadFuncs. RxFuncAdd takes three arguments – the name of the function
as it will be used in the rexx program, the name of the library from which to load the
function, and the name of the function as it appears in the library.

if rxFuncAdd(’arrloadfuncs’, ’rxhash’, ’arrloadfuncs’) then
call ArrLoadFuncs

else do
/* rxFuncErrMsg() is a Regina extension */
say ’RxHash load failed:’ rxFuncErrMsg()
exit 1
end

RxFuncAdd returns 0 on success, or 1 on failure. Regina has a function called
RxFuncErrMsg which can give useful information about the reason for a load failure.
A few common reasons for failure are:

Path issues: the library is called rxhash.dll on Win32 and OS/2 platforms, librx-
hash.a on AIX, librxhash.sl on HP-UX, and librxhash.so on other Unix platforms. On

2

Win32, this file needs to be in the path, or in the directory containing your rexx inter-
preter. On OS/2, it needs to be in a directory specified in LIBPATH. On Unix systems,
it needs to be in a directory listed in LIBPATH on AIX, SHLIB_PATH on HP-UX
32-bit, or LD_LIBRARY_PATH on most other Unix systems. Some systems have an
ldconfig utility which allows you to forego setting this environment variable.

Windows 95: early releases of windows 95 did not include msvcrt.dll, the C run-
time library used by RxHash. This library is sometimes installed with applications
software. It can also be obtained through service packs, or from the Microsoft web
site.

Rexx.exe: Regina includes two executables, one called ‘rexx’, and the other called
‘regina’. The difference is that ‘rexx’ includes the Rexx interpreter as part of the exe-
cutable, while ‘regina’ loads the interpreter from a shared library. RxFuncAdd works
only with the ‘regina’ version of the interpreter (the ‘rexx’ version is slightly faster,
though). This will not be a problem with most other interpreters.

Already loaded: IBM’s interpeters leave functions registered between invocations,
unless they are explicitly deregistered. rxFuncAdd() will return 0 if the function is
already registered. You can test for it using rxFuncQuery().

1.4 Licencing

RxHash is distributed free of charge in the hopes that it will be useful, but without any
warranty. It is distributed under the terms of the Mozilla Public License. The precise
details of the licence are found in the file MPL-1.1.txt in the distribution.

My reading of the licence is that you may use the library for any purpose, however
if you make changes to the library, you must make them available for others to use. If
you use the library purely as shipped by me, even if you link in the C routines to your
C callable libraries, you have no obligation to publish your code. If you alter, say, the
hash routines, you do need to publish those alterations. If you, say, replace the hash
routines completely, you can organise things in such a way that your replacements don’t
need to be published, but you’ll have to publish at least the interface to your routines.

2 Rexx Functions

The functions described in this section are meant to be called from rexx programs. In
general, you call ArrNew() to initialise an array, use the other functions to manipulate
it, and finally use ArrDrop() to release the memory used to hold those values.

2.1 ArrLoadFuncs

ArrLoadFuncs() -> 0

ArrLoadFuncs() registers all the functions in the library with the Rexx interpreter.
This is the fastest and most convenient way of initialising the library. See section 1.3
for an example.

3

2.2 ArrDropFuncs

ArrDropFuncs() -> 0

ArrDropFuncs() deregisters all the functions in the library. This needs to be done
if you are using an IBM interpreter and want to upgrade the library. On the other hand,
functions are not reference counted, so adding twice and dropping once results in the
functions being dropped. If you use an IBM interpreter, you need to be careful about
dropping functions if there are running programs which use them.

2.3 ArrVersion

ArrVersion() -> 1.0.0

ArrVersion() returns the version number of the library in the formatversion.release.
modification. This is useful for reporting bugs (see section 1.2), and for ensuring that
an upgrade has been successful.

2.4 ArrNew

ArrNew([default]) -> arr

ArrNew() allocates memory for the array and returns a pointer to it.Arr can be
printed using c2x(), but is not intended to be used apart from passing it to the other
functions in the package. All the array manipulation routines require the return code of
ArrNew() to be passed as the first argument.

If defaultis specified, it is the default value to return from ArrGet() when the key
is not found. Otherwise, the default value is the null string.

2.5 ArrSet

ArrSet(arr, key, value) -> 0

ArrSet() associatesvaluewith key in arrayarr. valuecan be any value, butkey
must not be the null string. If you set the samekeytwice, the previous value is replaced.
Look-ups in RxHash are case-sensitive.

2.6 ArrDefault

ArrDefault(arr, value) -> 0

ArrDefault() sets the default value which is returned by ArrGet() if thekeyargu-
ment is not inarr. The default default value is the null string.

4

2.7 ArrGet

ArrGet(arr, key) -> value

ArrGet() looks upkeyin arrayarr and returns its value. Ifkeyis not found in the
array, the null string is returned, unless a user-specified default is in effect forarr. If
there’s a user-specified default, that value is returned. In contrast to many C associative
array interfaces,key is not added to the array if it isn’t already there. Look-ups in
RxHash are case-sensitive.

Use ArrIn() to distinguish cases wherekey is associated with the null string or
user-specified default value from cases wherekeyis not in the array.

2.8 ArrIn

ArrIn(arr, key[, key2, ...]) -> 0 or 1

ArrIn() returns 1 if all the specified keys are stored in the arrayarr, or 0 if any of
them aren’t. For instance:

respondto: procedure
parse arg guy

do select
when ArrIn(guy, ’tall’, ’dark’, ’handsome’) then

call go_on_date guy
when ArrIn(guy, ’medium’, ’dirty blonde’, ’scruffy’) then

call send_bug_report guy
otherwise

call wash_hair
end

In case you missed it, look-ups in RxHash are case-sensitive.

2.9 ArrDoOver

ArrDoOver(arr[, reset]) -> key

ArrDoOver() is named after the object rexx ‘do x over y.’ instruction. It returns the
‘next’ key value from arrayarr. When the end of the array is reached, the null string
is returned. This contrasts with RegUtil’s RegStemDoOver(), which returns 0 or 1 and
takes the name of a variable into which to stuff the key value.

The order in which keys are returned depends on the hashing algorithm used and
the order in which values were added to the array. It may change between releases if
the hash algorithm is improved.

If resetis passed as an argument, with any value, the enumeration starts over from
the start of the hash table. If you always iterate fully through the hash table, stopping
only when the null string is returned, you don’t need to usereset. If you exit the loop
after some interesting value is discovered, you should start your next iteration with a
resetargument.

5

You can intersperse ArrDoOver() calls on different arrays, however there is state
information associated with each array, so you can’t nest different ArrDoOver() loops
using the samearr argument. You can get the same effect by making a copy using
ArrCopy(). If you add elements toarr while looping using ArrDoOver(), you will get
inconsistent results – some new values will be returned, but others won’t. If you delete
the most recently returned element fromarr then call ArrDoOver(), your application
will crash. If you delete any other element, you will get inconsistent results.

2.10 ArrCopy

ArrCopy(arr) -> arr2

ArrCopy() makes a copy ofarr. The copy is complete, except the ArrDoOver()
state is not copied. After the copy is made, the two arrays are independent of each
other.

2.11 ArrDrop

ArrDrop(arr[, key, ...]) -> 0

ArrDrop() either removes one or more key values fromarr or removes all values
from arr and frees the array memory. It’s a good idea to clean up memory when you’re
finished with it (this is not only true for RxHash’s data – it applies to stem variables
and even ordinary rexx variables). Ifkey is not found, nothing happens, but it’s not
treated as an error. Ifarr is not a value originally returned by ArrNew(), ArrCopy(),
or some other library which uses the C interface to generate arrays, the process is likely
to crash.

2.12 ArrToStem

ArrToStem(arr, stemname) -> 0

ArrToStem() drops the stemstemname, then, for each element of arrayarr, sets
the corresponding tail ofstemname. If a default value has been specified forarr, it is
assigned tostemname.

The effect of this is to copy the array values into the stem.

2.13 ArrFromStem

ArrFromStem(stemname) -> arr

ArrFromStem() returns a new array which is populated with all the data from stem
stemname. If a value has been assigned to the stem itself, this is made the default value
of arr.

The effect is to copy the stem values into the array.

6

2.14 Passing arrays to subroutines

The principal motivation behind RxHash was to have something that acts like an array
and can be passed to functions. The normal situation in ANSI Rexx is that you must
expose a stem, and either have the stem’s name be ‘well known’, or pass the name as
an argument.

The return code of ArrNew() can be assigned and passed to subroutines like any
other variable, with one proviso: it’s actually a pointer, so this code:

height = ArrNew()
call ArrSet height, ’giraffe’, ’tall’
colour = height
call ArrSet colour, ’giraffe’, ’spotty brown’

animal = ’giraffe’
say ’name’ animal ’height’ ArrGet(height, animal) ’colour’ ArrGet(colour, animal)

prints ‘name giraffe height spotty brown colour spotty brown’, which is not what was
desired. In this case, a sensible person would probably use ArrNew() on each array,
but in other cases it would make sense to copy the array using ArrCopy().

2.15 Arrays returned by other packages

At the time of writing, there are no packages which use this library, however there is
a C interface and I expect some users will take advantage of it in their own extension
libraries. The expectation is that some routines will return arrays populated with certain
data. These arrays will be created using exactly the same routines as the RxHash
routines, and will be fully inter-operable.

3 C Functions

The C interface is intended for application developers who want to return values in
RxHash arrays, rather than setting a stem. They could also be used as a general hash
library, but they’re not especially tuned for performance, and I’m sure there are better
hash libraries available.

The Rexx array variables are simply the pointer value returned by rxhash_new().
The macros RXHASH_TO_RXSTRING() and RXSTRING_TO_RXHASH() assist
in converting between the rxhash_t and RXSTRING types.

You need to include rxhash.h in your source file. On Unix, you usually don’t have
to link against rxhash, but if you don’t the user must load rxhash in the Rexx program
before calling routines from your library. On NT and OS/2, you need to link against
rxhash.lib. If your compiler doesn’t understand the structure of rxhash.lib, you can
probably generate a compatible library from rxhash.def using tools supplied with your
C compiler.

The hash function was taken from CWeb, by Knuth and Levy, and the routines are
adapted from an awk interpreter I wrote a few years ago.

7

3.1 rxhash_new

rxhash_t tbl;
tbl = rxhash_new();

rxhash_new() initialises a new hash table. It returns NULL if memory allocation
failed.

3.2 RXHASH_TO_RXSTRING

rxhash_t tbl;
PRXSTRING result;

tbl = rxhash_new();
RXHASH_TO_RXSTRING(result, tbl);

This macro copies the contents oftbl to the Rexx stringresult. You need to ensure
resulthas enough space to hold the pointer (sizeof(tbl)). Note that the resulting Rexx
string is a pointer value which is meant to be passed to array-processing C routines. It
is not a printable string.

3.3 RXSTRING_TO_RXHASH

rxhash_t tbl;
PRXSTRING result;

RXSTRING_TO_RXHASH(tbl, result);

This macro copies the contents of the Rexx stringresult to tbl. You need to ensure
result is the right size.

3.4 rxhash_set

int rxhash_set(rxhash_t tbl, PRXSTRING key, PRXSTRING val);

rxhash_set() associatesval with keyin arraytbl. It returns 0 if this operation failed
(usually due to memory allocation failure), or 1 if it’s successful. There’s no way to
determine whether the value was previously set (you can call rxhash_get() first if this
is important).

keymust be non-null and the string must not be zero-length.val must be non-null,
but the string may be zero-length.

3.5 rxhash_get

PRXSTRING rxhash_get(rxhash_t tbl, PRXSTRING key);

rxhash_get() retrieves the value associated withkeyin arraytbl. If keyis not found,
it returns NULL. In contrast to ArrGet(), you can distinguish between this value and

8

a successful return value, hence rxhash_get() takes the place of both ArrGet() and
ArrIn(). In contrast to many C associative array interfaces,key is not added to the
array by rxhash_get() if it’s not already there.

3.6 rxhash_drop

void rxhash_drop(rxhash_t tbl, PRXSTRING key);

rxhash_drop() drops a single element associated withkey from arraytbl. It’s not
possible to determine whetherkeywas set before being dropped.

3.7 rxhash_delete

void rxhash_delete(rxhash_t tbl);

rxhash_delete() drops all elements from arraytbl then frees the memory used to
hold the array.

3.8 rxhash_iterate

int rxhash_iterate(rxhash_t tbl, PRXSTRING prevkey,
PRXSTRING * pkey, PRXSTRING * pval);

rxhash_iterate() returns the ‘next’ element afterprevkeyfrom arraytbl. It returns 1
if there is a ‘next’ element, or 0 if there isn’t.prevkeyshould be NULL, in which case
the interation starts from the beginning of the table, or a value previously returned in
pkey.

pkeyandpval point to buffers which will be used to store pointers to the key and
value entries. These pointers are valid as long as the associated key value is not deleted
from tbl. It’s probably not a good idea to change the array while you iterate through it,
though.

The state information stored against each table for ArrDoOver() is not used by
rxhash_iterate(). In fact, the function is re-entrant. There are no restrictions on how
many times you iterate through a given array at the same time, although more than once
seems excessive, and you need to ensure you use different variables forpkeyandpval.

Keys are returned in an unpredictable order – it depends on the hash algorithm and
the order in which keys were added.

3.9 rxhash_setprop

int rxhash_setprop(rxhash_t tbl, PRXSTRING key, PRXSTRING val);

rxhash_setprop() sets a property oftbl. Key can be any name understood by the
caller – properties are a mechanism for associating arbitrary data with an array for the
use of the caller. Names starting with ‘rxhash_’ are reserved for the use of the RxHash
library.

9

3.10 rxhash_getprop

PRXSTRING rxhash_getprop(rxhash_t tbl, PRXSTRING key);

rxhash_getprop() retrieves the value of thekeyproperty oftbl. If keyis not found,
it returns NULL.

As with rxhash_get(), the value returned by rxhash_getprop() is valid until the
property is dropped. Since there is no function for dropping properties, that means the
value is valid until thetbl is deleted.

10

	Introduction
	Installation
	Reporting Bugs
	Using RxFuncAdd
	Licencing

	Rexx Functions
	ArrLoadFuncs
	ArrDropFuncs
	ArrVersion
	ArrNew
	ArrSet
	ArrDefault
	ArrGet
	ArrIn
	ArrDoOver
	ArrCopy
	ArrDrop
	ArrToStem
	ArrFromStem
	Passing arrays to subroutines
	Arrays returned by other packages

	C Functions
	rxhash_new
	RXHASH_TO_RXSTRING
	RXSTRING_TO_RXHASH
	rxhash_set
	rxhash_get
	rxhash_drop
	rxhash_delete
	rxhash_iterate
	rxhash_setprop
	rxhash_getprop

